Stochastic areas, winding numbers and Hopf fibrations

被引:14
作者
Baudoin, Fabrice [1 ]
Wang, Jing [2 ]
机构
[1] Univ Connecticut, Dept Math, Mansfield, PA USA
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
关键词
ATIYAH-SINGER THEOREMS; PROBABILISTIC APPROACH;
D O I
10.1007/s00440-016-0745-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define and study stochastic areas processes associated with Brownian motions on the complex symmetric spaces and . The characteristic functions of those processes are computed and limit theorems are obtained. In the case , we also study windings of the Brownian motion on those spaces and compute the limit distributions. For the geometry of the Hopf fibration plays a central role, whereas for it is the anti-de Sitter fibration.
引用
收藏
页码:977 / 1005
页数:29
相关论文
共 26 条
[1]  
[Anonymous], 1961, Ann. Scuola Norm. Sup. Pisa
[2]  
Baudoin F., 2012, ESAIM-PROBAB STAT, V16, P453, DOI DOI 10.1051/PS/2011107
[3]   The subelliptic heat kernel on the CR sphere [J].
Baudoin, Fabrice ;
Wang, Jing .
MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (1-2) :135-150
[4]   The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds [J].
Baudoin, Fabrice ;
Bonnefont, Michel .
MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (03) :647-672
[5]  
BERARDBERGERY L, 1982, ILLINOIS J MATH, V26, P181
[6]   Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions [J].
Biane, P ;
Pitman, J ;
Yor, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 38 (04) :435-465
[7]  
Bismut J.M., 1988, ASTERISQUE, p[157, 37]
[10]  
Bonnefont M, 2012, POTENTIAL ANAL, V36, P275, DOI 10.1007/s11118-011-9230-4