Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue

被引:124
作者
Chimene, David [3 ]
Miller, Logan [3 ]
Cross, Lauren M. [3 ]
Jaiswal, Manish K. [3 ]
Singh, Irtisha [4 ]
Gaharwar, Akhilesh K. [1 ,2 ]
机构
[1] Texas A&M Univ, Coll Engn, Dept Mat Sci & Engn, Dept Biomed Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Ctr Remote Hlth Technol & Syst, College Stn, TX 77843 USA
[3] Texas A&M Univ, Coll Engn, Dept Biomed Engn, College Stn, TX 77843 USA
[4] Texas A&M Hlth Sci Ctr, Coll Med, Dept Mol & Cellular Med, Bryan, TX 77807 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
bone bioprinting; osteoinductive bioinks; nanomaterials; ionic-covalent reinforcement; hydrogels; HYDROGELS; DIFFERENTIATION; BIOMATERIALS;
D O I
10.1021/acsami.9b19037
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bioprinting is an emerging additive manufacturing approach to the fabrication of patient-specific, implantable three-dimensional (3D) constructs for regenerative medicine. However, developing cell-compatible bioinks with high printability, structural stability, biodegradability, and bioactive characteristics is still a primary challenge for translating 3D bioprinting technology to preclinical and clinal models. To overcome this challenge, we developed a nanoengineered ionic covalent entanglement (NICE) bioink formulation for 3D bone bioprinting. The NICE bioinks allow precise control over printability, mechanical properties, and degradation characteristics, enabling custom 3D fabrication of mechanically resilient, cellularized structures. We demonstrate cell-induced remodeling of 3D bioprinted scaffolds over 60 days, demonstrating deposition of nascent extracellular matrix proteins. Interestingly, the bioprinted constructs induce endochondral differentiation of encapsulated human mesenchymal stem cells (hMSCs) in the absence of osteoinducing agent. Using next-generation transcriptome sequencing (RNA-seq) technology, we establish the role of nanosilicates, a bioactive component of NICE bioink, to stimulate endochondral differentiation at the transcriptome level. Overall, the osteoinductive bioink has the ability to induce formation of osteo-related mineralized extracellular matrix by encapsulated hMSCs in growth factor-free conditions. Furthermore, we demonstrate the ability of NICE bioink to fabricate patient-specific, implantable 3D scaffolds for repair of craniomaxillofacial bone defects. We envision development of this NICE bioink technology toward a realistic clinical process for 3D bioprinting patient-specific bone tissue for regenerative medicine.
引用
收藏
页码:15976 / 15988
页数:13
相关论文
共 35 条
[21]   Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms [J].
Loessner, Daniela ;
Meinert, Christoph ;
Kaemmerer, Elke ;
Martine, Laure C. ;
Yue, Kan ;
Levett, Peter A. ;
Klein, Travis J. ;
Melchels, Ferry P. W. ;
Khademhosseini, Ali ;
Hutmacher, Dietmar W. .
NATURE PROTOCOLS, 2016, 11 (04) :727-746
[22]   25th Anniversary Article: Engineering Hydrogels for Biofabrication [J].
Malda, Jos ;
Visser, Jetze ;
Melchels, Ferry P. ;
Juengst, Tomasz ;
Hennink, Wim E. ;
Dhert, Wouter J. A. ;
Groll, Juergen ;
Hutmacher, Dietmar W. .
ADVANCED MATERIALS, 2013, 25 (36) :5011-5028
[23]   K+ and Na+ effects on the gelation properties Of κ-Carrageenan [J].
Mangione, MR ;
Giacomazza, D ;
Bulone, D ;
Martorana, V ;
Cavallaro, G ;
San Biagio, PL .
BIOPHYSICAL CHEMISTRY, 2005, 113 (02) :129-135
[24]   Biofabrication strategies for 3D in vitro models and regenerative medicine [J].
Moroni, Lorenzo ;
Burdick, Jason A. ;
Highley, Christopher ;
Lee, Sang Jin ;
Morimoto, Yuya ;
Takeuchi, Shoji ;
Yoo, James J. .
NATURE REVIEWS MATERIALS, 2018, 3 (05) :21-37
[25]   Mapping and quantifying mammalian transcriptomes by RNA-Seq [J].
Mortazavi, Ali ;
Williams, Brian A. ;
McCue, Kenneth ;
Schaeffer, Lorian ;
Wold, Barbara .
NATURE METHODS, 2008, 5 (07) :621-628
[26]   Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting [J].
Mouser, Vivian H. M. ;
Melchels, Ferry P. W. ;
Visser, Jetze ;
Dhert, Wouter J. A. ;
Gawlitta, Debby ;
Malda, Jos .
BIOFABRICATION, 2016, 8 (03)
[27]   3D bioprinting of tissues and organs [J].
Murphy, Sean V. ;
Atala, Anthony .
NATURE BIOTECHNOLOGY, 2014, 32 (08) :773-785
[28]   Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments [J].
Paul, Arghya ;
Manoharan, Vijayan ;
Krafft, Dorothee ;
Assmann, Alexander ;
Uquillas, Jorge Alfredo ;
Shin, Su Ryon ;
Hasan, Anwarul ;
Hussain, Mohammad Asif ;
Memic, Adnan ;
Gaharwar, Akhilesh K. ;
Khademhosseini, Ali .
JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (20) :3544-3554
[29]   Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration [J].
Peak, Charles W. ;
Singh, Kanwar Abhay ;
Adlouni, Mu'ath ;
Chen, Jeffrey ;
Gaharwar, Akhilesh K. .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (11)
[30]   Osteoblast Differentiation at a Glance [J].
Rutkovskiy, Arkady ;
Stenslokken, Kare-Olav ;
Vaage, Ingvar Jarle .
MEDICAL SCIENCE MONITOR BASIC RESEARCH, 2016, 22 :95-106