Planar Octilinear Drawings with One Bend Per Edge

被引:0
作者
Bekos, Michael A. [1 ]
Gronemann, Martin [2 ]
Kaufmann, Michael [1 ]
Krug, Robert [1 ]
机构
[1] Univ Tubingen, Wilhelm Schickard Inst Informat, Tubingen, Germany
[2] Univ Cologne, Inst Informat, Cologne, Germany
来源
GRAPH DRAWING (GD 2014) | 2014年 / 8871卷
关键词
GRAPHS; NUMBER;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A k-planar graph is a planar graph in which each vertex has degree less or equal to k. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n(2)) x O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 21 条
  • [1] Bekos M.A., 2014, PLANAR OCTILINEAR DR
  • [2] Biedl T., 1994, Algorithms - ESA '94. Second Annual European Symposium Proceedings, P24, DOI 10.1007/BFb0049394
  • [3] Orthogonal Graph Drawing with Flexibility Constraints
    Blaesius, Thomas
    Krug, Marcus
    Rutter, Ignaz
    Wagner, Dorothea
    [J]. ALGORITHMICA, 2014, 68 (04) : 859 - 885
  • [4] Bodlaender HL., 2004, J GRAPH ALGORITHMS A, V8, P89, DOI DOI 10.7155/JGAA.00083
  • [5] Di Giacomo E, 2014, LECT NOTES COMPUT SC, V8392, P132
  • [6] DIBATTISTA G, 1990, LECT NOTES COMPUT SC, V443, P598
  • [7] On the computational complexity of upward and rectilinear planarity testing
    Garg, A
    Tamassia, R
    [J]. SIAM JOURNAL ON COMPUTING, 2001, 31 (02) : 601 - 625
  • [8] Gutwenger C., 2001, LNCS, V1984, P77, DOI DOI 10.1007/3-540-44541-2_8
  • [9] Automatic visualisation of metro maps
    Hong, Seok-Hee
    Merrick, Damian
    do Nascimento, Hugo A. D.
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2006, 17 (03) : 203 - 224
  • [10] The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree
    Jelinek, Vit
    Jelinkova, Eva
    Kratochvil, Jan
    Lidicky, Bernard
    Tesar, Marek
    Vyskocil, Tomas
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (04) : 981 - 1005