CFD-DEM simulation of the gas-solid flow in a cyclone separator

被引:258
|
作者
Chu, K. W. [1 ]
Wang, B. [1 ,3 ]
Xu, D. L. [2 ]
Chen, Y. X. [2 ]
Yu, A. B. [1 ]
机构
[1] Univ New S Wales, Lab Simulat & Modelling Particulate Syst, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Xian Univ Architecture & Technol, Inst Powder Engn, Sch Mat Sci & Engn, Xian 710055, Peoples R China
[3] Lanzhou Univ, Key Lab Western Chinas Environm Syst, Coll Earth & Environm Sci, Lanzhou 730000, Peoples R China
关键词
Cyclone; Gas-solid flow; Computational fluid dynamics; Discrete element method; Separation; Granular dynamics; DISCRETE PARTICLE SIMULATION; LIQUID-FLUIDIZED-BEDS; NUMERICAL-SIMULATION; SCALE SIMULATION; PRESSURE-DROP; HEAT-TRANSFER; PERFORMANCE; COLLECTION; BEHAVIOR; SYSTEMS;
D O I
10.1016/j.ces.2010.11.026
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, a numerical study of the gas-solid flow in a gas cyclone is carried out by use of the combined discrete element method (DEM) and computational fluid dynamics (CFD) model where the motion of discrete particles phase is obtained by DEM which applies Newton's equations of motion to every individual particle and the flow of continuum fluid by the traditional CFD which solves the Navier-Stokes equations at a computational cell scale. The model successfully captures the key flow features in a gas cyclone, such as the strands flow pattern of particles, and the decrease of pressure drop and tangential velocity after loading solids. The effect of solid loading ratio is studied and analysed in terms of gas and solid flow structures, and the particle-gas, particle-particle and particle-wall interaction forces. It is found that the gas pressure drop increases first and then decreases when solids are loaded. The reaction force of particles on gas flow is mainly in the tangential direction and directs mainly upward in the axial direction. The reaction force in the tangential direction will decelerate gas phase and the upward axial force will prevent gas phase from flowing downward in the near wall region. The intensive particle-wall collision regions mainly locate in the wall opposite to the cyclone inlet and the cone wall. Moreover, as the solid loading ratio increases, number of turns travelled by solids in a cyclone decreases especially in the apex region of the cyclone while the width of solid strands increases, the pressure drop and tangential velocity decrease, the high axial velocity region moves upwards, and the radial flow of gas phase is significantly dampened. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:834 / 847
页数:14
相关论文
共 50 条
  • [21] CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed
    Wang, Shuai
    Luo, Kun
    Hu, Chenshu
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2017, 172 : 199 - 215
  • [22] CFD-DEM simulation of polydisperse gas-solid flow of Geldart A particles in bubbling micro-fluidized beds
    Li, Shijiao
    Zhao, Peng
    Xu, Ji
    Zhang, Li
    Wang, Junwu
    CHEMICAL ENGINEERING SCIENCE, 2022, 253
  • [23] CFD-DEM investigation of gas-solid swirling flow in an industrial-scale annular pipe
    Wan, Zhanghao
    Yang, Shiliang
    Tang, Duzuo
    Yuan, Haibin
    Hu, Jianhang
    Wang, Hua
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [24] CFD-DEM modeling of gas-solid flow and catalytic MTO reaction in a fluidized bed reactor
    Zhuang, Ya-Qing
    Chen, Xiao-Min
    Luo, Zheng-Hong
    Xiao, Jie
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 60 : 1 - 16
  • [25] The research of gas-solid fluidized bed bubbling behavior based on CFD-DEM coupled simulation
    Xie, Yuhui
    Chen, Yibiao
    Fang, Zheng
    Zhou, Hongming
    Wei, Shuaikang
    Yang, Lei
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 195 : 166 - 180
  • [26] Hydrodynamic CFD-DEM model validation in a gas-solid vortex unit
    Wery, Florian
    Vandewalle, Laurien A.
    Marin, Guy B.
    Heynderickx, Geraldine J.
    Van Geem, Kevin M.
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [27] Scaling method of CFD-DEM simulations for gas-solid flows in risers
    Mu L.
    Buist K.A.
    Kuipers J.A.M.
    Deen N.G.
    Chemical Engineering Science: X, 2020, 6
  • [28] CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process
    Wu, Changning
    Cheng, Yi
    Ding, Yulong
    Jin, Yong
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (01) : 542 - 549
  • [29] Study of erosion prediction of turbulent gas-solid flow in plugged tees via CFD-DEM
    Farokhipour, A.
    Mansoori, Z.
    Rasteh, A.
    Rasoulian, M. A.
    Saffar-Avval, M.
    Ahmadi, G.
    POWDER TECHNOLOGY, 2019, 352 (136-150) : 136 - 150
  • [30] Numerical Investigation on Gas-solid Flow in a Circumfluent Cyclone Separator
    Zhang, Pan
    Duan, Jihai
    Chen, Guanghui
    Wang, Weiwen
    AEROSOL AND AIR QUALITY RESEARCH, 2019, 19 (05) : 971 - 980