Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability

被引:0
|
作者
Thomas, MP
Monaghan, DT
Morrisett, RA [1 ]
机构
[1] Univ Texas, Coll Pharm, Div Pharmacol & Toxicol, Austin, TX 78712 USA
[2] Univ Texas, Coll Pharm, Inst Neurosci, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CAI pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure, Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5-phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARs may serve as epileptic foci, long term alterations in NMDAR function may be expected to generate paroxysmal depolarizing shifts underlying ictal events after-withdrawal from ethanol exposure.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [41] Evidence for a role of N-methyl-D-aspartate receptors in L-arginine-induced attenuation of morphine antinociception
    Bhargava, HN
    Sharma, SS
    Bian, JT
    BRAIN RESEARCH, 1998, 782 (1-2) : 314 - 317
  • [42] DESENSITIZATION OF N-METHYL-D-ASPARTATE RECEPTORS - A PROBLEM OF INTERPRETATION
    COLQUHOUN, D
    HAWKES, AG
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (22) : 10327 - 10329
  • [43] Opiate physical dependence and N-methyl-D-aspartate receptors
    Noda, Y
    Nabeshima, T
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2004, 500 (1-3) : 121 - 128
  • [44] THE RELATIONSHIP OF N-METHYL-D-ASPARTATE RECEPTORS AND MAJOR DEPRESSION
    Zhang, H. S.
    Shi, L. J.
    Sun, L. X.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2016, 119 : 29 - 29
  • [45] N-methyl-D-aspartate receptors in hyperammonaemia and hepatic encephalopathy
    Erceg, S.
    Rodrigo, R.
    Monfort, P.
    Llansalo, M.
    Montoliu, C.
    Sanchez-Perez, A. M.
    Cauli, O.
    Piedrafita, B.
    Felipo, V.
    HEPATIC ENCEPHALOPATHY AND NITROGEN METABOLISM, 2006, : 183 - 193
  • [46] Localization and functions of neurokinin and N-methyl-D-aspartate receptors
    Adam, B
    Liebregts, T
    Gerken, G
    Holtmann, G
    GASTROINTESTINAL INFLAMMATION AND DISTURBED GUT FUNCTION: THE CHALLENGE OF NEW CONCEPTS, 2003, 130 : 253 - 259
  • [47] N-METHYL-D-ASPARTATE RECEPTORS AND NITRIC-OXIDE
    BOCKAERT, J
    OLIVIER, M
    MANZONI, O
    LAFONCAZAL, M
    MARIN, P
    FAGNI, L
    JOURNAL OF NEUROCHEMISTRY, 1993, 61 : S52 - S52
  • [48] Protein quality control of N-methyl-D-aspartate receptors
    Benske, Taylor M.
    Mu, Ting-Wei
    Wang, Ya-Juan
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2022, 16
  • [49] Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy
    Chen, Shuang
    Xu, Da
    Fan, Liu
    Fang, Zhi
    Wang, Xiufeng
    Li, Man
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2022, 14
  • [50] N-METHYL-D-ASPARTATE (NMDA) RECEPTORS ARE INACTIVATED BY TRYPSIN
    ALLEN, CN
    BRADY, R
    SWANN, J
    HORI, N
    CARPENTER, DO
    BRAIN RESEARCH, 1988, 458 (01) : 147 - 150