Recent Advances in Nanostructured Inorganic Hole-Transporting Materials for Perovskite Solar Cells

被引:16
|
作者
Huang, Dingyan [1 ]
Xiang, Huimin [1 ]
Ran, Ran [1 ]
Wang, Wei [1 ]
Zhou, Wei [1 ]
Shao, Zongping [1 ,2 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
perovskite solar cells; nanostructure; inorganic hole-transporting materials; stability; power conversion efficiency; NICKEL-OXIDE NANOPARTICLES; ENABLES HIGH-EFFICIENCY; LARGE-AREA; ROOM-TEMPERATURE; SPIRO-OMETAD; EXTRACTION LAYER; DOPANT-FREE; THIN-FILM; PERFORMANCE; STABILITY;
D O I
10.3390/nano12152592
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic-inorganic halide perovskite solar cells (PSCs) have received particular attention in the last decade because of the high-power conversion efficiencies (PCEs), facile fabrication route and low cost. However, one of the most crucial obstacles to hindering the commercialization of PSCs is the instability issue, which is mainly caused by the inferior quality of the perovskite films and the poor tolerance of organic hole-transporting layer (HTL) against heat and moisture. Inorganic HTL materials are regarded as promising alternatives to replace organic counterparts for stable PSCs due to the high chemical stability, wide band gap, high light transmittance and low cost. In particular, nanostructure construction is reported to be an effective strategy to boost the hole transfer capability of inorganic HTLs and then enhance the PCEs of PSCs. Herein, the recent advances in the design and fabrication of nanostructured inorganic materials as HTLs for PSCs are reviewed by highlighting the superiority of nanostructured inorganic HTLs over organic counterparts in terms of moisture and heat tolerance, hole transfer capability and light transmittance. Furthermore, several strategies to boost the performance of inorganic HTLs are proposed, including fabrication route design, functional/selectively doping, morphology control, nanocomposite construction, etc. Finally, the challenges and future research directions about nanostructured inorganic HTL-based PSCs are provided and discussed. This review presents helpful guidelines for the design and fabrication of high-efficiency and durable inorganic HTL-based PSCs.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells
    Sheibani, Esmaeil
    Yang, Li
    Zhang, Jinbao
    SOLAR RRL, 2020, 4 (12)
  • [12] Complex Metal Oxides as Emerging Inorganic Hole-Transporting Materials for Perovskite Solar Cells
    Bai, Yu
    He, Jingsheng
    Ran, Ran
    Zhou, Wei
    Wang, Wei
    Shao, Zongping
    SMALL, 2024, 20 (25)
  • [13] Recent Advances in Hole-Transporting Layers for Organic Solar Cells
    Anrango-Camacho, Cinthya
    Pavon-Ipiales, Karla
    Frontana-Uribe, Bernardo A.
    Palma-Cando, Alex
    NANOMATERIALS, 2022, 12 (03)
  • [14] Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells
    Yu, Ze
    Sun, Licheng
    ADVANCED ENERGY MATERIALS, 2015, 5 (12)
  • [15] Hole-Transporting Materials for Perovskite-Sensitized Solar Cells
    Dhingra, Pankul
    Singh, Pallavi
    Rana, Prem Jyoti Singh
    Garg, Akshat
    Kar, Prasenjit
    ENERGY TECHNOLOGY, 2016, 4 (08) : 891 - 938
  • [16] Organic hole-transporting materials for efficient perovskite solar cells
    Zhao, Xiaojuan
    Wang, Mingkui
    MATERIALS TODAY ENERGY, 2018, 7 : 208 - 220
  • [17] Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells
    Yan, Weibo
    Ye, Senyun
    Li, Yunlong
    Sun, Weihai
    Rao, Haixia
    Liu, Zhiwei
    Bian, Zuqiang
    Huang, Chunhui
    ADVANCED ENERGY MATERIALS, 2016, 6 (17)
  • [18] Development of simple hole-transporting materials for perovskite solar cells
    Namespetra, Andrew M.
    Hendsbee, Arthur D.
    Welch, Gregory C.
    Hill, Ian G.
    CANADIAN JOURNAL OF CHEMISTRY, 2016, 94 (04) : 352 - 359
  • [19] π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells
    Gheno, Alexandre
    Vedraine, Sylvain
    Ratier, Bernard
    Boucle, Johann
    METALS, 2016, 6 (01)
  • [20] Application of Organic Hole-Transporting Materials in Perovskite Solar Cells
    Liu Xue-Peng
    Kong Fan-Tai
    Chen Wang-Chao
    Yu Ting
    Guo Fu-Ling
    Chen Jian
    Dai Song-Yuan
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (06) : 1347 - 1370