Fast Apparent Oscillations of Fundamental Constants

被引:13
作者
Antypas, Dionysios [1 ]
Budker, Dmitry [2 ,3 ]
Flambaum, Victor V. [2 ,4 ]
Kozlov, Mikhail G. [5 ,6 ]
Perez, Gilad [7 ]
Ye, Jun [8 ,9 ]
机构
[1] Johannes Gutenberg Univ Mainz, Helmholtz Inst Mainz, D-55128 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Helmholtz Inst Mainz, D-55099 Mainz, Germany
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
[5] NRC Kurchatov Inst, Petersburg Nucl Phys Inst, Gatchina 188300, Russia
[6] St Petersburg Electrotech Univ LETI, Dept Phys, Prof Popov Str 5, St Petersburg 197376, Russia
[7] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel
[8] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA
[9] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
俄罗斯科学基金会;
关键词
fundamental constants; dark matter; relaxion; PHYSICAL CONSTANTS;
D O I
10.1002/andp.201900566
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Precision spectroscopy of atoms and molecules allows one to search for and to put stringent limits on the variation of fundamental constants. These experiments are typically interpreted in terms of variations of the fine structure constant alpha and the electron-to-proton mass ratio mu=me/mp. Atomic spectroscopy is usually less sensitive to other fundamental constants, unless the hyperfine structure of atomic levels is studied. However, the number of possible dimensionless constants increases when allowed for fast variations of the constants, where "fast" is determined by the time scale of the response of the studied species or experimental apparatus used. In this case, the relevant dimensionless quantity is, for example, the ratio me/⟨me⟩ and ⟨me⟩ is the time average. In this sense, one may say that the experimental signal depends on the variation of dimensionful constants (me in this example).
引用
收藏
页数:5
相关论文
共 31 条
  • [1] Aharony S., 2019, ARXIV190202788
  • [2] Scalar Dark Matter in the Radio-Frequency Band: Atomic-Spectroscopy Search Results
    Antypas, D.
    Tretiak, O.
    Garcon, A.
    Ozeri, R.
    Perez, G.
    Budker, D.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [3] Search for light scalar dark matter with atomic gravitational wave detectors
    Arvanitaki, Asimina
    Graham, Peter W.
    Hogan, Jason M.
    Rajendran, Surjeet
    Van Tilburg, Ken
    [J]. PHYSICAL REVIEW D, 2018, 97 (07)
  • [4] Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors
    Arvanitaki, Asimina
    Dimopoulos, Savas
    Van Tilburg, Ken
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (03)
  • [5] Searching for dilaton dark matter with atomic clocks
    Arvanitaki, Asimina
    Huang, Junwu
    Van Tilburg, Ken
    [J]. PHYSICAL REVIEW D, 2015, 91 (01):
  • [6] Coherent relaxion dark matter
    Banerjee, Abhishek
    Kim, Hyungjin
    Perez, Gilad
    [J]. PHYSICAL REVIEW D, 2019, 100 (11)
  • [7] Cosmologies with varying light speed
    Barrow, JD
    [J]. PHYSICAL REVIEW D, 1999, 59 (04):
  • [8] Beacham J, 2019, ARXIV190109966
  • [9] THE STRING DILATON AND A LEAST COUPLING PRINCIPLE
    DAMOUR, T
    POLYAKOV, AM
    [J]. NUCLEAR PHYSICS B, 1994, 423 (2-3) : 532 - 558
  • [10] The anatomy of electroweak symmetry breaking Tome I: The Higgs boson in the Standard Model
    Djouadi, Abdelhak
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 457 (1-4): : 1 - 216