Modeling the Effect of Low Pt Loading Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells. Part II: Parametric Analysis

被引:19
作者
Sanchez-Ramos, Arturo [1 ]
Gostick, Jeff T. [2 ]
Garcia-Salaberri, Pablo A. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Thermal & Fluids Engn, Leganes 28911, Spain
[2] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
关键词
Pt loading; oxygen transport; microstructure; catalyst layer; polymer electrolyte fuel cell; TRANSPORT RESISTANCES; OXYGEN PERMEABILITY; MASS-TRANSPORT; PERFORMANCE; IMPACT; STRATEGIES; DEGRADATION; DISSOLUTION; MORPHOLOGY; DIFFUSION;
D O I
10.1149/1945-7111/ac811d
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A parametric analysis is presented using a previously validated 1D model for a cathode catalyst layer (CL). The results show that maximum power density at low Pt loading can be maximized with relatively thin CLs (thickness similar to 2 mu m) featuring a high carbon volume fraction (low ionomer-to-carbon weight ratio, I/C) compared to high Pt loading CLs. The shift of the optimal carbon volume fraction (I/C ratio) is caused by the dominant role of the local oxygen transport resistance at low Pt loading, which is lowered by a reduction of the average ionomer film thickness (better ionomer distribution among carbon particles). In contrast, at high Pt loading, higher porosity and pore radius (lower carbon volume fraction) is beneficial due to an increase of bulk effective diffusivity despite thickening of ionomer films. Moreover, the results show that performance at low Pt loading is significantly improved with increasing mass-specific activity. The effect of average saturation and ionomer permeability on performance at low Pt loading is lower compared to dry CL composition and mass-specific activity.
引用
收藏
页数:16
相关论文
共 60 条
[1]   Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells [J].
Alaswad, Abed ;
Omran, Abdelnasir ;
Sodre, Jose Ricardo ;
Wilberforce, Tabbi ;
Pignatelli, Gianmichelle ;
Dassisti, Michele ;
Baroutaji, Ahmad ;
Olabi, Abdul Ghani .
ENERGIES, 2021, 14 (01)
[2]   Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers [J].
Alink, Robert ;
Singh, Rajveer ;
Schneider, Patrick ;
Christmann, Klaere ;
Schall, Johannes ;
Keding, Roman ;
Zamel, Nada .
MOLECULES, 2020, 25 (07)
[3]  
[Anonymous], FCH 2 JU MULTIANNUAL
[4]   Ultralow platinum loading proton exchange membrane fuel cells: Performance losses and solutions [J].
Banham, Dustin ;
Zou, Jinxiang ;
Mukerjee, Sanjeev ;
Liu, Zihan ;
Yang, Dong ;
Zhang, Yi ;
Peng, Ye ;
Dong, Angang .
JOURNAL OF POWER SOURCES, 2021, 490 (490)
[5]  
Borup K., ANN MER REV EV M 201
[6]   Effects of Porous Carbon Morphology, Agglomerate Structure and Relative Humidity on Local Oxygen Transport Resistance [J].
Cetinbas, Firat C. ;
Ahluwalia, Rajesh K. ;
Kariuki, Nancy N. ;
De Andrade, Vincent ;
Myers, Deborah J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (01)
[7]  
Chong L., 2021, HIGHLY DURABLE ELECT, DOI [10.21203/rs.3.rs-347344/v1, DOI 10.21203/RS.3.RS-347344/V1]
[8]   Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells [J].
Conde, Julio J. ;
Antonia Folgado, M. ;
Ferreira-Aparicio, P. ;
Chaparro, Antonio M. ;
Chowdhury, Anamika ;
Kusoglu, Ahmet ;
Cullen, David ;
Weber, Adam Z. .
JOURNAL OF POWER SOURCES, 2019, 427 :250-259
[9]   New roads and challenges for fuel cells in heavy-duty transportation [J].
Cullen, David A. ;
Neyerlin, K. C. ;
Ahluwalia, Rajesh K. ;
Mukundan, Rangachary ;
More, Karren L. ;
Borup, Rodney L. ;
Weber, Adam Z. ;
Myers, Deborah J. ;
Kusoglu, Ahmet .
NATURE ENERGY, 2021, 6 (05) :462-474
[10]   Modeling Oxygen Transport in High Surface Area Carbon Supports for Polymer-Electrolyte Fuel Cells [J].
Darling, Robert M. ;
Burlatsky, Sergei F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)