Multi-omics approaches for comprehensive analysis and understanding of the immune response in the miniature pig breed

被引:3
|
作者
Arora, Devender [1 ]
Park, Jong-Eun [1 ]
Lim, Dajeong [1 ]
Cho, In-Cheol [2 ]
Kang, Kyung Soo [3 ]
Kim, Tae-Hun [1 ]
Park, Woncheoul [1 ]
机构
[1] Natl Inst Anim Sci, Anim Genom & Bioinformat Div, RDA, Wonju, South Korea
[2] Natl Inst Anim Sci, Subtrop Livestock Res Inst, RDA, Jeju, South Korea
[3] Dept Anim Sci, Shingu Coll, Seongnam Si, South Korea
来源
PLOS ONE | 2022年 / 17卷 / 05期
关键词
POSITIVE SELECTION; ANIMAL-MODELS; GENOME; SEQUENCE; GENE; BETA; EXPRESSION; SIGNATURES; MINIPIGS; FORMAT;
D O I
10.1371/journal.pone.0263035
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The porcine immune system has an important role in pre-clinical studies together with understanding the biological response mechanisms before entering into clinical trials. The size distribution of the Korean minipig is an important feature that make this breed ideal for biomedical research and safe practice in post clinical studies. The extremely tiny (ET) minipig serves as an excellent model for various biomedical research studies, but the comparatively frail and vulnerable immune response to the environment over its Large (L) size minipig breed leads to additional after born care. To overcome this pitfall, comparative analysis of the genomic regions under selection in the L type breed could provide a better understanding at the molecular level and lead to the development of an enhanced variety of ET type minipig. In this study, we utilized whole genome sequencing (WGS) to identify traces of artificial selection and integrated them with transcriptome data generated from blood samples to find strongly selected and differentially expressed genes of interest. We identified a total of 35 common genes among which 7 were differentially expressed and showed selective sweep in the L type over the ET type minipig breed. The stabilization of these genes were further confirmed using nucleotide diversity analysis, and these genes could serve as potential biomarkers for the development of a better variety of ET type pig breed.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-omics approaches to improve malaria therapy
    Zhou, Min
    Varol, Ayseguel
    Efferth, Thomas
    PHARMACOLOGICAL RESEARCH, 2021, 167
  • [32] Multi-omics approaches to study platelet mechanisms
    Solari, Fiorella A.
    Krahn, Daniel
    Swieringa, Frauke
    Verhelst, Steven
    Rassaf, Tienush
    Tasdogan, Alpaslan
    Zahedi, Rene P.
    Lorenz, Kristina
    Renne, Thomas
    Heemskerk, Johan W. M.
    Sickmann, Albert
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2023, 73
  • [33] Advancement in Multi-omics approaches for Uterine Sarcoma
    Wang, Wuyang
    Hu, Yu
    Fu, Fangfang
    Ren, Wu
    Wang, Tian
    Wang, Shixuan
    Li, Yan
    BIOMARKER RESEARCH, 2024, 12 (01)
  • [34] Multi-omics for studying and understanding polar life
    Clark, M. S.
    Hoffman, J. I.
    Peck, L. S.
    Bargelloni, L.
    Gande, D.
    Havermans, C.
    Meyer, B.
    Patarnello, T.
    Phillips, T.
    Stoof-Leichsenring, K. R.
    Vendrami, D. L. J.
    Beck, A.
    Collins, G.
    Friedrich, M. W.
    Halanych, K. M.
    Masello, J. F.
    Nagel, R.
    Noren, K.
    Printzen, C.
    Ruiz, M. B.
    Wohlrab, S.
    Becker, B.
    Dumack, K.
    Ghaderiardakani, F.
    Glaser, K.
    Heesch, S.
    Held, C.
    John, U.
    Karsten, U.
    Kempf, S.
    Lucassen, M.
    Paijmans, A.
    Schimani, K.
    Wallberg, A.
    Wunder, L. C.
    Mock, T.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [35] Multi-omics for studying and understanding polar life
    M. S. Clark
    J. I. Hoffman
    L. S. Peck
    L. Bargelloni
    D. Gande
    C. Havermans
    B. Meyer
    T. Patarnello
    T. Phillips
    K. R. Stoof-Leichsenring
    D. L. J. Vendrami
    A. Beck
    G. Collins
    M. W. Friedrich
    K. M. Halanych
    J. F. Masello
    R. Nagel
    K. Norén
    C. Printzen
    M. B. Ruiz
    S. Wohlrab
    B. Becker
    K. Dumack
    F. Ghaderiardakani
    K. Glaser
    S. Heesch
    C. Held
    U. John
    U. Karsten
    S. Kempf
    M. Lucassen
    A. Paijmans
    K. Schimani
    A. Wallberg
    L. C. Wunder
    T. Mock
    Nature Communications, 14
  • [36] Multi-omics analysis reveals the impact of influenza a virus host adaptation on immune signatures in pig tracheal tissue
    Laybourn, Helena Aagaard
    Hellemann Polhaus, Chrysillis
    Kristensen, Charlotte
    Lyngfeldt Henriksen, Betina
    Zhang, Yaolei
    Brogaard, Louise
    Larsen, Cathrine Agnete
    Trebbien, Ramona
    Larsen, Lars Erik
    Kalogeropoulos, Konstantinos
    Auf Dem Keller, Ulrich
    Skovgaard, Kerstin
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [37] Using machine learning approaches for multi-omics data analysis: A review
    Reel, Parminder S.
    Reel, Smarti
    Pearson, Ewan
    Trucco, Emanuele
    Jefferson, Emily
    BIOTECHNOLOGY ADVANCES, 2021, 49
  • [38] Computational approaches for network-based integrative multi-omics analysis
    Agamah, Francis E.
    Bayjanov, Jumamurat R.
    Niehues, Anna
    Njoku, Kelechi F.
    Skelton, Michelle
    Mazandu, Gaston K.
    Ederveen, Thomas H. A.
    Mulder, Nicola
    Chimusa, Emile R.
    't Hoen, Peter A. C.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [39] Multi-omics approaches for in-depth understanding of therapeutic mechanism for Traditional Chinese Medicine
    Zhu, Xue
    Yao, Qi
    Yang, Pengshuo
    Zhao, Dan
    Yang, Ronghua
    Bai, Hong
    Ning, Kang
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [40] iSODA: A Comprehensive Tool for Integrative Omics Data Analysis in Single- and Multi-Omics Experiments
    Olivier-Jimenez, Damien
    Derks, Rico J. E.
    Harari, Oscar
    Cruchaga, Carlos
    Ali, Muhammad
    Ori, Alessandro
    Di Fraia, Domenico
    Cabukusta, Birol
    Henrie, Andy
    Giera, Martin
    Mohammed, Yassene
    ANALYTICAL CHEMISTRY, 2025, 97 (05) : 2689 - 2697