Hardy spaces for Laguerre expansions

被引:19
作者
Dziubanski, J. [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
Hardy spaces; maximal functions; Laguerre expansions;
D O I
10.1007/s00365-006-0667-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L-n(a)(x) be the standard Laguerre functions of type a. We denote phi(a)(n)(x) = L-n(a)(x(2))(2x)(1/2). Let T-t f(x) =Sigma(n) e(-(n+(a+1)/2)t) < f, L-n(a)> L-n(a)(x) and T-t f(x) = Sigma(n) e(-(4n+2a+2)t) < f, phi(a)(n)>phi(a)(n)(x) be the semigroups associated with the orthonormal systems L-n(a) and phi(a)(n). We say that a function f belongs to the Hardy space H-1 associated with one of the semigroups if the corresponding maximal function belongs to L-1((0, infinity), dx). We prove special atomic decompositions of the elements of the Hardy spaces.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 12 条
[1]   Hardy spaces H1 for Schrodinger operators with certain potentials [J].
Dziubanski, J ;
Zienkiewicz, J .
STUDIA MATHEMATICA, 2004, 164 (01) :39-53
[2]  
Dziubanski J, 1997, STUD MATH, V126, P149
[3]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279
[4]  
Dziubanski J., 2002, Banach Center Publ., V56, P45
[5]   LOCAL VERSION OF REAL HARDY SPACES [J].
GOLDBERG, D .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (01) :27-42
[6]   POISSON INTEGRALS FOR HERMITE AND LAGUERRE EXPANSIONS [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) :231-+
[7]   Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted Lp spaces [J].
Nowak, A .
STUDIA MATHEMATICA, 2003, 158 (03) :239-268
[8]  
NOWAK A, IN PRESS INDIAN U MA
[9]  
Stein E M., 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[10]  
STEMPAK K, 1994, TOHOKU MATH J, V46, P83, DOI 10.2748/tmj/1178225803