A monolithic, back-gated diamond field-effect transistor for tunable color centers

被引:2
作者
Oing, D. [1 ,2 ]
Ney, M. [1 ,2 ]
Bendt, G. [3 ,4 ]
Schulz, S. [3 ,4 ]
Geller, M. [1 ,2 ]
Woehrl, N. [1 ,2 ]
Lorke, A. [1 ,2 ]
机构
[1] Univ Duisburg Essen, Dept Phys, Lotharstr 1, D-47057 Duisburg, Germany
[2] Univ Duisburg Essen, CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
[3] Univ Duisburg Essen, Fac Chem, Inorgan Chem, Univ Str 7, D-45114 Essen, Germany
[4] Univ Duisburg Essen, CENIDE, Univ Str 7, D-45114 Essen, Germany
关键词
Two-dimensional hole gas; Single crystal diamond; P-type doping; Surface electronic properties; Boron doping; Field effect transistor; Nitrogen-vacancy center; NITROGEN-VACANCY CENTERS; SURFACE CONDUCTIVITY; THIN-FILMS; GROWTH; CVD;
D O I
10.1016/j.diamond.2021.108597
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an innovative design for a monolithic field effect transistor, where all components consist of the widebandgap material diamond. The back gate-electrode is realized by a buried, degenerately boron-doped diamond (resistivity < 10(-2) Omega cm), while the dielectric material is made of lightly nitrogen-doped diamond. The 2DHG on the hydrogen-terminated surface serves as the conductive channel of the transistor. We discuss the band structure of this device, the function of each individual component and show the sample preparation routine. Furthermore, we investigate the electrical tunability of the 2DHG and the optical tunability of NV-centers in a first proof-of principle sample. Additionally, we use the field effect to manipulate the charge state of color centers in the nitrogen-doped film. This vertical and monolithic device structure opens up a range of applications, not only in the diamond semiconductor and quantum information technology, but also for sensing applications where the back-gating is advantageous or where an all-diamond layer sequence is beneficial.
引用
收藏
页数:6
相关论文
共 41 条
[1]   Thick boron doped diamond single crystals for high power electronics [J].
Achard, J. ;
Silva, F. ;
Issaoui, R. ;
Brinza, O. ;
Tallaire, A. ;
Schneider, H. ;
Isoird, K. ;
Ding, H. ;
Kone, S. ;
Pinault, M. A. ;
Jomard, F. ;
Gicquel, A. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (02) :145-152
[2]   Radiation Damage Tests on Diamond and Scintillation Detector Components for the ITER Radial Neutron Camera [J].
Baccaro, Stefania ;
Cemmi, Alessia ;
Di Sarcina, Ilaria ;
Esposito, Basilio ;
Ferrara, Giuseppe ;
Grossi, Angelo ;
Montecchi, Marco ;
Podda, Salvatore ;
Pompili, Fulvio ;
Quintieri, Lina ;
Riva, Marco .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (08) :2046-2053
[3]   Time-resolved transconductance spectroscopy on self-assembled quantum dots: Spectral evolution from single- into many-particle states [J].
Beckel, A. ;
Ludwig, A. ;
Wieck, A. D. ;
Lorke, A. ;
Geller, M. .
PHYSICAL REVIEW B, 2014, 89 (15)
[4]   Diamond Field-Effect Transistors With V2O5-Induced Transfer Doping: Scaling to 50-nm Gate Length [J].
Crawford, Kevin G. ;
Weil, James D. ;
Shah, Pankaj B. ;
Ruzmetov, Dmitry A. ;
Neupane, Mahesh R. ;
Kingkeo, Khamsouk ;
Birdwell, A. Glen ;
Ivanov, Tony G. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (06) :2270-2275
[5]   The nitrogen-vacancy colour centre in diamond [J].
Doherty, Marcus W. ;
Manson, Neil B. ;
Delaney, Paul ;
Jelezko, Fedor ;
Wrachtrup, Joerg ;
Hollenberg, Lloyd C. L. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 528 (01) :1-45
[6]   Deterministic Electrical Charge-State Initialization of Single Nitrogen-Vacancy Center in Diamond [J].
Doi, Y. ;
Makino, T. ;
Kato, H. ;
Takeuchi, D. ;
Ogura, M. ;
Okushi, H. ;
Morishita, H. ;
Tashima, T. ;
Miwa, S. ;
Yamasaki, S. ;
Neumann, P. ;
Wrachtrup, J. ;
Suzuki, Y. ;
Mizuochi, N. .
PHYSICAL REVIEW X, 2014, 4 (01)
[7]  
Field J.E., 1992, The properties of natural and synthetic diamond
[8]   Progress Toward Diamond Power Field-Effect Transistors [J].
Geis, Michael W. ;
Wade, Travis C. ;
Wuorio, Charles H. ;
Fedynyshyn, Theodore H. ;
Duncan, Bradley ;
Plaut, Maxwell E. ;
Varghese, Joseph O. ;
Warnock, Shireen M. ;
Vitale, Steven A. ;
Hollis, Mark A. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (22)
[9]   Electronic transitions of electrons bound to phosphorus donors in diamond [J].
Gheeraert, E ;
Koizumi, S ;
Teraji, T ;
Kanda, H .
SOLID STATE COMMUNICATIONS, 2000, 113 (10) :577-580
[10]   Protein-modified nanocrystalline diamond thin films for biosensor applications [J].
Härtl, A ;
Schmich, E ;
Garrido, JA ;
Hernando, J ;
Catharino, SCR ;
Walter, S ;
Feulner, P ;
Kromka, A ;
Steinmüller, D ;
Stutzmann, M .
NATURE MATERIALS, 2004, 3 (10) :736-742