Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles

被引:202
作者
Song, Hui [1 ,2 ]
Meng, Xianguang [3 ]
Dao, Thang Duy [2 ,7 ]
Zhou, Wei [5 ]
Liu, Huimin [2 ]
Shi, Li [1 ,2 ]
Zhang, Huabin [2 ]
Nagao, Tadaaki [2 ,7 ,8 ]
Kako, Tetsuya [2 ]
Ye, Jinhua [1 ,2 ,4 ,6 ]
机构
[1] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0600814, Japan
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] North China Univ Sci & Technol, Coll Mat Sci & Engn, Photofunct Mat Res Platform, Tangshan 063210, Peoples R China
[4] Tianjin Univ, Sch Mat Sci & Engn, TJU NIMS Int Collaborat Lab, Tianjin 300072, Peoples R China
[5] Tianjin Univ, Fac Sci, Tianjin Key Lab Low Dimens Mat Phys & Preparing T, Dept Appl Phys, Tianjin 300072, Peoples R China
[6] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[7] Japan Sci & Technol Agcy JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[8] Hokkaido Univ, Grad Sch Sci, Dept Condensed Matter Phys, Kita Ku, Kita 10 Nishi 8, Sapporo, Hokkaido 0600810, Japan
基金
美国国家科学基金会;
关键词
plasmonic coupling effect; platinum; gold; photocatalytic CO2 reduction; activation energy; WATER-GAS SHIFT; METAL NANOPARTICLES; CO2; HYDROGENATION; METHANE; SOLAR; OXIDATION; REDUCTION; PHOTOCATALYSIS; NANOSTRUCTURES; PLATINUM;
D O I
10.1021/acsami.7b13043
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photocatalytic reduction of carbon dioxide (CO2) is attractive for the production of valuable fuels and mitigating the influence of greenhouse gas emission. However, the extreme inertness of CO2 and the sluggish kinetics of photoexcited charge carrier transfer process greatly limit the conversion efficiency of CO2 photoreduction. Herein, we report that the plasmonic coupling effect of Pt and Au nanoparticles (NPs) profoundly enhances the efficiency of CO2 reduction through dry reforming of methane reaction assisted by light illumination, reducing activation energies for CO2 reduction similar to 30% below thermal activation energies and achieving a reaction rate 2.4 times higher than that of the thermocatalytic reaction. UV-visible (vis) absorption spectra and wavelength-dependent performances show that not only UV but also visible light play important roles in promoting CO2 reduction due to effective localized surface plasmon resonance (LSPR) coupling between Pt and Au NPs. Finite-difference time-domain simulations and in situ diffuse reflectance infrared Fourier transform spectroscopy further reveal that effective coupling LSPR effect generates strong local electric fields and excites high concentration of hot electrons to activate the reactants and intermediate species, reduce the activation energies, and increase the reaction rate. This work provides a new pathway toward the efficient plasmon-enhanced chemical reactions via reducing the activation energies by utilizing solar energy.
引用
收藏
页码:408 / 416
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 1998, Handbook of Optical Constants of Solids
[2]  
[Anonymous], ANGEW CHEM
[3]  
[Anonymous], BINARY ALLOY PHASE D
[4]  
Aslam U, 2017, NAT NANOTECHNOL, V12, P1000, DOI [10.1038/NNANO.2017.131, 10.1038/nnano.2017.131]
[5]   Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles [J].
Bai, Shuxing ;
Shao, Qi ;
Wang, Pengtang ;
Dai, Qiguang ;
Wang, Xingyi ;
Huang, Xiaoqing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (20) :6827-6830
[6]   Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties [J].
Bigall, Nadja C. ;
Haertling, Thomas ;
Klose, Markus ;
Simon, Paul ;
Eng, Lukas M. ;
Eychmueller, Alexander .
NANO LETTERS, 2008, 8 (12) :4588-4592
[7]   HOW CAN A PARTICLE ABSORB MORE THAN THE LIGHT INCIDENT ON IT [J].
BOHREN, CF .
AMERICAN JOURNAL OF PHYSICS, 1983, 51 (04) :323-327
[8]  
Christopher P, 2012, NAT MATER, V11, P1044, DOI [10.1038/nmat3454, 10.1038/NMAT3454]
[9]  
Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
[10]   Artificial photosynthesis as a frontier technology for energy sustainability [J].
Faunce, Thomas ;
Styring, Stenbjorn ;
Wasielewski, Michael R. ;
Brudvig, Gary W. ;
Rutherford, A. William ;
Messinger, Johannes ;
Lee, Adam F. ;
Hill, Craig L. ;
deGroot, Huub ;
Fontecave, Marc ;
MacFarlane, Doug R. ;
Hankamer, Ben ;
Nocera, Daniel G. ;
Tiede, David M. ;
Dau, Holger ;
Hillier, Warwick ;
Wang, Lianzhou ;
Amal, Rose .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1074-1076