Bispectrum Features and Multilayer Perceptron Classifier to Enhance Seizure Prediction

被引:49
作者
Assi, Elie Bou [1 ]
Gagliano, Laura [1 ]
Rihana, Sandy [2 ]
Nguyen, Dang K. [3 ]
Sawan, Mohamad [1 ]
机构
[1] Polytech Montreal, Inst Biomed Engn, Polystim Neurotech Lab, Montreal, PQ, Canada
[2] Holy Spirit Univ Kaslik USEK, Biomed Engn Dept, Jounieh, Lebanon
[3] Univ Montreal, Hosp Ctr CHUM, Montreal, PQ, Canada
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
加拿大自然科学与工程研究理事会;
关键词
Seizure Prediction; Interictal Recordings; Higher Spectral Orders (HOS); Preictal Period; iEEG Recordings;
D O I
10.1038/s41598-018-33969-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to accurately forecast seizures could significantly improve the quality of life of patients with drug-refractory epilepsy. Prediction capabilities rely on the adequate identification of seizure activity precursors from electroencephalography recordings. Although a long list of features has been proposed, none of these is able to independently characterize the brain states during transition to a seizure. This work assessed the feasibility of using the bispectrum, an advanced signal processing technique based on higher order statistics, as a precursor of seizure activity. Quantitative features were extracted from the bispectrum and passed through two statistical tests to check for significant differences between preictal and interictal recordings. Results showed statistically significant differences (p < 0.05) between preictal and interictal states using all bispectrum-extracted features. We used normalized bispectral entropy, normalized bispectral squared entropy, and mean of magnitude as inputs to a 5-layer multilayer perceptron classifier and achieved respective held-out test accuracies of 78.11%, 72.64%, and 73.26%.
引用
收藏
页数:8
相关论文
共 21 条
  • [1] Slow modulations of high-frequency activity (40-140 Hz) discriminate preictal changes in human focal epilepsy
    Alvarado-Rojas, C.
    Valderrama, M.
    Fouad-Ahmed, A.
    Feldwisch-Drentrup, H.
    Ihle, M.
    Teixeira, C. A.
    Sales, F.
    Schulze-Bonhage, A.
    Adam, C.
    Dourado, A.
    Charpier, S.
    Navarro, V.
    Le Van Quyen, M.
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [2] Towards accurate prediction of epileptic seizures: A review
    Assi, Elie Bou
    Nguyen, Dang K.
    Rihana, Sandy
    Sawan, Mohamad
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 34 : 144 - 157
  • [3] Epileptic seizure prediction using relative spectral power features
    Bandarabadi, Mojtaba
    Teixeira, Cesar A.
    Rasekhi, Jalil
    Dourado, Antonio
    [J]. CLINICAL NEUROPHYSIOLOGY, 2015, 126 (02) : 237 - 248
  • [4] Bou Assi E, 2017, IEEE T BIOMEDICAL EN
  • [5] Forecasting Seizures Using Intracranial EEG Measures and SVM in Naturally Occurring Canine Epilepsy
    Brinkmann, Benjamin H.
    Patterson, Edward E.
    Vite, Charles
    Vasoli, Vincent M.
    Crepeau, Daniel
    Stead, Matt
    Howbert, J. Jeffry
    Cherkassky, Vladimir
    Wagenaar, Joost B.
    Litt, Brian
    Worrell, Gregory A.
    [J]. PLOS ONE, 2015, 10 (08):
  • [6] Chua K. C., 2009, Journal of Medical Engineering & Technology, V33, P42, DOI 10.1080/03091900701559408
  • [7] Cloppenborg T, 2016, J NEUROLOGY NEUROSUR
  • [8] Conundrums of High-Frequency Oscillations (80-800 Hz) in the Epileptic Brain
    de la Prida, Liset Menendez
    Staba, Richard J.
    Dian, Joshua A.
    [J]. JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2015, 32 (03) : 207 - 219
  • [9] Engel J, 2016, NEUROLOGY
  • [10] Seizure prediction for therapeutic devices: A review
    Gadhoumi, Kais
    Lina, Jean-Marc
    Mormann, Florian
    Gotman, Jean
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2016, 260 : 270 - 282