TACDFSL: Task Adaptive Cross Domain Few-Shot Learning

被引:2
|
作者
Zhang, Qi [1 ]
Jiang, Yingluo [1 ]
Wen, Zhijie [1 ]
机构
[1] Shanghai Univ, Dept Math, Coll Sci, Shanghai 200444, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 06期
基金
中国国家自然科学基金;
关键词
cross domain few-shot learning; domain shift; empirical marginal distribution; feature distribution transformation;
D O I
10.3390/sym14061097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cross Domain Few-Shot Learning (CDFSL) has attracted the attention of many scholars since it is closer to reality. The domain shift between the source domain and the target domain is a crucial problem for CDFSL. The essence of domain shift is the marginal distribution difference between two domains which is implicit and unknown. So the empirical marginal distribution measurement is proposed, that is, WDMDS (Wasserstein Distance for Measuring Domain Shift) and MMDMDS (Maximum Mean Discrepancy for Measuring Domain Shift). Besides this, pre-training a feature extractor and fine-tuning a classifier are used in order to have a good generalization in CDFSL. Since the feature obtained by the feature extractor is high-dimensional and left-biased, the adaptive feature distribution transformation is proposed, to make the feature distribution of each sample be approximately Gaussian distribution. This approximate symmetric distribution improves image classification accuracy by 3% on average. In addition, the applicability of different classifiers for CDFSL is investigated, and the classification model should be selected based on the empirical marginal distribution difference between the two domains. The Task Adaptive Cross Domain Few-Shot Learning (TACDFSL) is proposed based on the above ideas. TACDFSL improves image classification accuracy by 3-9%.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Few-shot classification with task-adaptive semantic feature learning
    Pan, Mei-Hong
    Xin, Hong-Yi
    Xia, Chun-Qiu
    Shen, Hong -Bin
    PATTERN RECOGNITION, 2023, 141
  • [32] Domain-Adaptive Few-Shot Learning for Hyperspectral Image Classification
    Zhang, Andi
    Liu, Fang
    Liu, Jia
    Tang, Xu
    Gao, Wenfei
    Li, Donghui
    Xiao, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [33] Dual Distillation Discriminator Networks for Domain Adaptive Few-Shot Learning
    Liu, Xiyao
    Ji, Zhong
    Pang, Yanwei
    Han, Zhi
    NEURAL NETWORKS, 2023, 165 : 625 - 633
  • [34] Domain-adaptive graph neural network for few-shot learning
    Yang, Zhankui
    Li, Wenyong
    Zheng, Tengfei
    Lv, Jiawei
    Yang, Xinting
    Ding, Zhiming
    KNOWLEDGE-BASED SYSTEMS, 2023, 275
  • [35] Cross-Domain Few-Shot Classification via Adversarial Task Augmentation
    Wang, Haoqing
    Deng, Zhi-Hong
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1075 - 1081
  • [36] Learning and Adapting Diverse Representations for Cross-domain Few-shot Learning
    Liu, Ge
    Zhang, Zhongqiang
    Cai, Fuhan
    Liu, Duo
    Fang, Xiangzhong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 294 - 303
  • [37] A Comparison of Machine Learning Methods for Cross-Domain Few-Shot Learning
    Wang, Hongyu
    Gouk, Henry
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    AI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12576 : 445 - 457
  • [38] Cross-Domain Few-Shot Graph Classification with a Reinforced Task Coordinator
    Zhang, Qiannan
    Pei, Shichao
    Yang, Qiang
    Zhang, Chuxu
    Chawla, Nitesh
    Zhang, Xiangliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4893 - 4901
  • [39] A Dropout Style Model Augmentation for Cross Domain Few-Shot Learning
    Tu, Pei-Cheng
    Pao, Hsing-Kuo
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1138 - 1147
  • [40] Spectral Decomposition and Transformation for Cross-domain Few-shot Learning
    Liu, Yicong
    Zou, Yixiong
    Li, Ruixuan
    Li, Yuhua
    NEURAL NETWORKS, 2024, 179