Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis

被引:111
作者
Han, Wen-Kai [1 ]
Wei, Jin-Xin [1 ]
Xiao, Kang [1 ]
Ouyang, Ting [1 ]
Peng, Xinwen [2 ]
Zhao, Shenlong [3 ]
Liu, Zhao-Qing [1 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab Clean Energy & Mat,Minist Educ, Key Lab Water Qual & Conservat Pearl River Delta, 230 Wai Huan Xi Rd, Guangzhou 510006, Peoples R China
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] South China Univ Technol, Sch Light Ind Sci & Engn, Wushan St, Guangzhou 510641, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Charge Disproportionation; Delithium; Lattice Strain; LiNiO2; Urea Oxidation Reaction; ANIONIC REDOX ACTIVITY; METAL; EFFICIENT; ARRAYS; NI;
D O I
10.1002/anie.202206050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the fact that high-valent nickel-based oxides exhibit promising catalytic activity for the urea oxidation reaction (UOR), the fundamental questions concerning the origin of the high performance and the structure-activity correlations remain to be elucidated. Here, we unveil the underlying enhanced mechanism of UOR by employing a series of prepared cation-vacancy controllable LiNiO2 (LNO) model catalysts. Impressively, the optimized layered LNO-2 exhibits an extremely low overpotential at 10 mA cm(-2) along with excellent stability after the 160 h test. Operando characterisations combined with the theoretical analysis reveal the activated lattice oxygen in layered LiNiO2 with moderate cation vacancies triggers charge disproportion of the Ni site to form Ni4+ species, facilitating deprotonation in a lattice oxygen involved catalytic process.
引用
收藏
页数:9
相关论文
共 45 条
[31]   Operando Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy [J].
Tsunekawa, Shun ;
Yamamoto, Futaba ;
Wang, Ke-Hsuan ;
Nagasaka, Masanari ;
Yuzawa, Hayato ;
Takakusagi, Satoru ;
Kondoh, Hiroshi ;
Asakura, Kiyotaka ;
Kawai, Takeshi ;
Yoshida, Masaaki .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (43) :23611-23618
[32]  
Wang, 2022, ANGEW CHEM, V134
[33]  
Wang Z., 2022, Angew. Chem., V61, DOI DOI 10.1002/ANIE.202114696
[34]  
Wu KH., 2022, CHEM CATAL, V2, P372
[35]   Iron-Incorporated α-Ni(OH)2 Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation [J].
Xie, Junfeng ;
Liu, Weiwei ;
Lei, Fengcai ;
Zhang, Xiaodong ;
Qu, Haichao ;
Gao, Li ;
Hao, Pin ;
Tang, Bo ;
Xie, Yi .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) :18408-18412
[36]   Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis [J].
Ye, Ke ;
Wang, Gang ;
Cao, Dianxue ;
Wang, Guoxiong .
TOPICS IN CURRENT CHEMISTRY, 2018, 376 (06)
[37]   Structural Stability of LiNiO2 Cycled above 4.2 V [J].
Yoon, Chong S. ;
Jun, Do-Wook ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ACS ENERGY LETTERS, 2017, 2 (05) :1150-1155
[38]   Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis [J].
Yu, Zi-You ;
Lang, Chao-Chao ;
Gao, Min-Rui ;
Chen, Yu ;
Fu, Qi-Qi ;
Duan, Yu ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1890-1897
[39]   BAND-GAPS AND ELECTRONIC-STRUCTURE OF TRANSITION-METAL COMPOUNDS [J].
ZAANEN, J ;
SAWATZKY, GA ;
ALLEN, JW .
PHYSICAL REVIEW LETTERS, 1985, 55 (04) :418-421
[40]   Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes [J].
Zhang, Hanlei ;
May, Brian M. ;
Serrano-Sevillano, Jon ;
Casas-Cabanas, Montse ;
Cabana, Jordi ;
Wang, Chongmin ;
Zhou, Guangwen .
CHEMISTRY OF MATERIALS, 2018, 30 (03) :692-699