Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis

被引:99
作者
Han, Wen-Kai [1 ]
Wei, Jin-Xin [1 ]
Xiao, Kang [1 ]
Ouyang, Ting [1 ]
Peng, Xinwen [2 ]
Zhao, Shenlong [3 ]
Liu, Zhao-Qing [1 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab Clean Energy & Mat,Minist Educ, Key Lab Water Qual & Conservat Pearl River Delta, 230 Wai Huan Xi Rd, Guangzhou 510006, Peoples R China
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] South China Univ Technol, Sch Light Ind Sci & Engn, Wushan St, Guangzhou 510641, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Charge Disproportionation; Delithium; Lattice Strain; LiNiO2; Urea Oxidation Reaction; ANIONIC REDOX ACTIVITY; METAL; EFFICIENT; ARRAYS; NI;
D O I
10.1002/anie.202206050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the fact that high-valent nickel-based oxides exhibit promising catalytic activity for the urea oxidation reaction (UOR), the fundamental questions concerning the origin of the high performance and the structure-activity correlations remain to be elucidated. Here, we unveil the underlying enhanced mechanism of UOR by employing a series of prepared cation-vacancy controllable LiNiO2 (LNO) model catalysts. Impressively, the optimized layered LNO-2 exhibits an extremely low overpotential at 10 mA cm(-2) along with excellent stability after the 160 h test. Operando characterisations combined with the theoretical analysis reveal the activated lattice oxygen in layered LiNiO2 with moderate cation vacancies triggers charge disproportion of the Ni site to form Ni4+ species, facilitating deprotonation in a lattice oxygen involved catalytic process.
引用
收藏
页数:9
相关论文
共 45 条
[1]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P12046
[3]   Reining in dissolved transition-metal ions [J].
Asl, Hooman Yaghoobnejad ;
Manthiram, Arumugam .
SCIENCE, 2020, 369 (6500) :140-141
[4]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[5]  
Bianchini M., 2019, ANGEW CHEM, V131, P10542, DOI [10.1002/ange.201812Angew.Chem.472, DOI 10.1002/ANGE.201812472]
[6]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458
[7]  
Bonda M, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.104409
[8]   Synthesis and electrochemical characterization of LiMO2 (M = Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries [J].
Chang, CC ;
Scarr, N ;
Kumta, PN .
SOLID STATE IONICS, 1998, 112 (3-4) :329-344
[9]   Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction [J].
Chen, Jiexin ;
Long, Qingwu ;
Xiao, Kang ;
Ouyang, Ting ;
Li, Nan ;
Ye, Siyu ;
Liu, Zhao-Qing .
SCIENCE BULLETIN, 2021, 66 (11) :1063-1072
[10]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122