A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems

被引:27
作者
Hüeber, S [1 ]
Mair, M [1 ]
Wohlmuth, BI [1 ]
机构
[1] Univ Stuttgart, IANS, D-7000 Stuttgart, Germany
关键词
multibody contact problems; optimal a priori error estimates; primal-dual active set strategy; mortar finite element methods; dual Lagrange multipliers; nonconforming meshes; linear elasticity;
D O I
10.1016/j.apnum.2004.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonconforming domain decomposition methods and their application to the numerical simulation of non-linear multibody contact problems play an important role in many applications in mechanics. To handle the non-linearity of the contact conditions, we apply a primal-dual active set strategy based on dual Lagrange multipliers. Combining this method with an optimal multigrid for the resulting linear algebraic problems and using inexact strategies, our algorithm yields an efficient iterative solver. Furthermore, we establish, under some regularity assumptions on the solution, optimal convergence orders for the discretization errors for the displacement and the Lagrange multiplier for linear and quadratic finite element spaces; we combine quadratic finite elements with linear and quadratic dual Lagrange multipliers. Several numerical examples confirm our theoretical results. In the last section, we extend our algorithm to a dynamic non-linear multibody contact problem. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 576
页数:22
相关论文
共 38 条
[1]  
[Anonymous], 2003, KONTINUUMS KONTAKTME
[2]  
[Anonymous], 1988, CONTACT PROBLEMS ELA
[3]  
Bastian P., 1997, Computing and Visualization in Science, V1, P27, DOI 10.1007/s007910050003
[4]  
BATHE K, 1986, FINITE ELEMENT METHO
[5]   Neumann-Dirichlet algorithm for unilateral contact problems: Convergence results [J].
Bayada, G ;
Sabil, J ;
Sassi, T .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (04) :381-386
[6]   Extension of the mortar finite element method to a variational inequality modeling unilateral contact [J].
Ben Belgacem, F ;
Hild, P ;
Laborde, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (02) :287-303
[7]   Hybrid finite element methods for the Signorini problem [J].
Ben Belgacem, F ;
Renard, Y .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1117-1145
[8]   EXISTENCE, UNIQUENESS, AND REGULARITY RESULTS FOR THE 2-BODY CONTACT PROBLEM [J].
BOIERI, P ;
GASTALDI, F ;
KINDERLEHRER, D .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (03) :251-277
[9]   Adaptive finite elements for elastic bodies in contact [J].
Carstensen, C ;
Scherf, O ;
Wriggers, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1605-1626
[10]  
Coorevits P, 2002, MATH COMPUT, V71, P1, DOI 10.1090/S0025-5718-01-01318-7