Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology

被引:18
作者
Ak, M. [1 ,2 ]
Toll, S. A. [3 ]
Hein, K. Z. [4 ]
Colen, R. R. [1 ,2 ]
Khatua, S. [5 ]
机构
[1] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Med Ctr, Hillman Canc Ctr, Pittsburgh, PA USA
[3] Childrens Hosp Michigan, Dept Hematol Oncol, Detroit, MI 48201 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Leukemia, Houston, TX 77030 USA
[5] Mayo Clin, Dept Pediat Hematol Oncol, Rochester, MN USA
关键词
GRADE GLIOMAS; IMAGING PREDICTOR; TEXTURE FEATURES; GLIOBLASTOMA; CLASSIFICATION; HETEROGENEITY; TUMORS; DIFFERENTIATION; METHYLATION; EPENDYMOMA;
D O I
10.3174/ajnr.A7297
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Exponential technologic advancements in imaging, high-performance computing, and artificial intelligence, in addition to increasing access to vast amounts of diverse data, have revolutionized the role of imaging in medicine. Radiomics is defined as a high-throughput feature-extraction method that unlocks microscale quantitative data hidden within standard-of-care medical imaging. Radiogenomics is defined as the linkage between imaging and genomics information. Multiple radiomics and radiogenomics studies performed on conventional and advanced neuro-oncology image modalities show that they have the potential to differentiate pseudoprogression from true progression, classify tumor subgroups, and predict recurrence, survival, and mutation status with high accuracy. In this article, we outline the technical steps involved in radiomics and radiogenomics analyses with the use of artificial intelligence methods and review current applications in adult and pediatric neuro-oncology.
引用
收藏
页码:792 / 801
页数:10
相关论文
共 95 条
[31]   Radiogenomics to characterize regional genetic heterogeneity in glioblastoma [J].
Hu, Leland S. ;
Ning, Shuluo ;
Eschbacher, Jennifer M. ;
Baxter, Leslie C. ;
Gaw, Nathan ;
Ranjbar, Sara ;
Plasencia, Jonathan ;
Dueck, Amylou C. ;
Peng, Sen ;
Smith, Kris A. ;
Nakaji, Peter ;
Karis, John P. ;
Quarles, C. Chad ;
Wu, Teresa ;
Loftus, Joseph C. ;
Jenkins, Robert B. ;
Sicotte, Hugues ;
Kollmeyer, Thomas M. ;
O'Neill, Brian P. ;
Elmquist, William ;
Hoxworth, Joseph M. ;
Frakes, David ;
Sarkaria, Jann ;
Swanson, Kristin R. ;
Nhan L. Tran ;
Li, Jing ;
Mitchell, J. Ross .
NEURO-ONCOLOGY, 2017, 19 (01) :128-137
[32]   Pitfalls in le neuroimaging of glioblastoma in le era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response [J].
Huang, Raymond Y. ;
Neagu, Martha R. ;
Reardon, David A. ;
Wen, Patrick Y. .
FRONTIERS IN NEUROLOGY, 2015, 6
[33]   MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma [J].
Iv, M. ;
Zhou, M. ;
Shpanskaya, K. ;
Perreault, S. ;
Wang, Z. ;
Tranvinh, E. ;
Lanzman, B. ;
Vajapeyam, S. ;
Vitanza, A. ;
Fisher, P. G. ;
Cho, Y. J. ;
Laughlin, S. ;
Ramaswamy, V. ;
Taylor, M. D. ;
Cheshier, S. H. ;
Grant, G. A. ;
Poussaint, T. Young ;
Gevaert, O. ;
Yeom, K. W. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (01) :154-161
[34]   Methods on Skull Stripping of MRI Head Scan Images-a Review [J].
Kalavathi, P. ;
Prasath, V. B. Surya .
JOURNAL OF DIGITAL IMAGING, 2016, 29 (03) :365-379
[35]   Temozolomide for low-grade gliomas - Predictive impact of 1p/19q loss on response and outcome [J].
Kaloshi, G. ;
Benouaich-Amiel, A. ;
Diakite, F. ;
Taillibert, S. ;
Lejeune, J. ;
Laigle-Donadey, F. ;
Renard, M.-A. ;
Iraqi, W. ;
Idbaih, A. ;
Paris, S. ;
Capelle, L. ;
Duffau, H. ;
Cornu, P. ;
Simon, J.-M. ;
Mokhtari, K. ;
Polivka, M. ;
Omuro, A. ;
Carpentier, A. ;
Sanson, M. ;
Delattre, J.-Y. ;
Hoang-Xuan, K. .
NEUROLOGY, 2007, 68 (21) :1831-1836
[36]   Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation [J].
Kang, Daesung ;
Park, Ji Eun ;
Kim, Young-Hoon ;
Kim, Jeong Hoon ;
Oh, Joo Young ;
Kim, Jungyoun ;
Kim, Yikyung ;
Kim, Sung Tae ;
Kim, Ho Sung .
NEURO-ONCOLOGY, 2018, 20 (09) :1251-1261
[37]   Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma [J].
Khatua, Soumen ;
Cooper, Laurence J. N. ;
Sandberg, David, I ;
Ketonen, Leena ;
Johnson, Jason M. ;
Rytting, Michael E. ;
Liu, Diane D. ;
Meador, Heather ;
Trikha, Prashant ;
Nakkula, Robin J. ;
Behbehani, Gregory K. ;
Ragoonanan, Dristhi ;
Gupta, Sumit ;
Kotrotsou, Aikaterini ;
Idris, Tagwa ;
Shpall, Elizabeth J. ;
Rezvani, Katy ;
Colen, Rivka ;
Zaky, Wafik ;
Lee, Dean A. ;
Gopalakrishnan, Vidya .
NEURO-ONCOLOGY, 2020, 22 (08) :1214-1225
[38]   Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response [J].
Kickingereder, Philipp ;
Gotz, Michael ;
Muschelli, John ;
Wick, Antje ;
Neuberger, Ulf ;
Shinohara, Russell T. ;
Sill, Martin ;
Nowosielski, Martha ;
Schlemmer, Heinz-Peter ;
Radbruch, Alexander ;
Wick, Wolfgang ;
Bendszus, Martin ;
Maier-Hein, Klaus H. ;
Bonekamp, David .
CLINICAL CANCER RESEARCH, 2016, 22 (23) :5765-5771
[39]   Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features [J].
Kickingereder, Philipp ;
Bonekamp, David ;
Nowosielski, Martha ;
Kratz, Annekathrin ;
Sill, Martin ;
Burth, Sina ;
Wick, Antje ;
Eidel, Oliver ;
Schlemmer, Heinz-Peter ;
Radbruch, Alexander ;
Debus, Jurgen ;
Herold-Mende, Christel ;
Unterberg, Andreas ;
Jones, David ;
Pfister, Stefan .
RADIOLOGY, 2016, 281 (03) :907-918
[40]   Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models [J].
Kickingereder, Philipp ;
Burth, Sina ;
Wick, Antje ;
Goetz, Michael ;
Eidel, Oliver ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. ;
Wick, Wolfgang ;
Bendszus, Martin ;
Radbruch, Alexander ;
Bonekamp, David .
RADIOLOGY, 2016, 280 (03) :880-889