Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology

被引:18
作者
Ak, M. [1 ,2 ]
Toll, S. A. [3 ]
Hein, K. Z. [4 ]
Colen, R. R. [1 ,2 ]
Khatua, S. [5 ]
机构
[1] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Med Ctr, Hillman Canc Ctr, Pittsburgh, PA USA
[3] Childrens Hosp Michigan, Dept Hematol Oncol, Detroit, MI 48201 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Leukemia, Houston, TX 77030 USA
[5] Mayo Clin, Dept Pediat Hematol Oncol, Rochester, MN USA
关键词
GRADE GLIOMAS; IMAGING PREDICTOR; TEXTURE FEATURES; GLIOBLASTOMA; CLASSIFICATION; HETEROGENEITY; TUMORS; DIFFERENTIATION; METHYLATION; EPENDYMOMA;
D O I
10.3174/ajnr.A7297
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Exponential technologic advancements in imaging, high-performance computing, and artificial intelligence, in addition to increasing access to vast amounts of diverse data, have revolutionized the role of imaging in medicine. Radiomics is defined as a high-throughput feature-extraction method that unlocks microscale quantitative data hidden within standard-of-care medical imaging. Radiogenomics is defined as the linkage between imaging and genomics information. Multiple radiomics and radiogenomics studies performed on conventional and advanced neuro-oncology image modalities show that they have the potential to differentiate pseudoprogression from true progression, classify tumor subgroups, and predict recurrence, survival, and mutation status with high accuracy. In this article, we outline the technical steps involved in radiomics and radiogenomics analyses with the use of artificial intelligence methods and review current applications in adult and pediatric neuro-oncology.
引用
收藏
页码:792 / 801
页数:10
相关论文
共 95 条
[1]   In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature [J].
Akbari, Named ;
Bakas, Spyridon ;
Pisapia, Jared M. ;
Nasrallah, MacLean P. ;
Rozycki, Martin ;
Martinez-Lage, Maria ;
Morrissette, Jennifer J. D. ;
Bilello, Michel ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEURO-ONCOLOGY, 2018, 20 (08) :1068-1079
[2]   Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging [J].
Akkus, Zeynettin ;
Sedlar, Jiri ;
Coufalova, Lucie ;
Korfiatis, Panagiotis ;
Kline, Timothy L. ;
Warner, Joshua D. ;
Agrawal, Jay ;
Erickson, Bradley J. .
CANCER IMAGING, 2015, 15 :1-10
[3]   Intraaxial brain masses: MR imaging-based diagnostic strategy - Initial experience [J].
Al-Okaili, Riyadh N. ;
Krejza, Jaroslaw ;
Woo, John H. ;
Wolf, Ronald L. ;
O'Rourke, Donald M. ;
Judy, Kevin D. ;
Poptani, Harish ;
Melhem, Elias R. .
RADIOLOGY, 2007, 243 (02) :539-550
[4]   Assessment of Glioblastoma Response in the Era of Bevacizumab: Longstanding and Emergent Challenges in the Imaging Evaluation of Pseudoresponse [J].
Arevalo, Octavio D. ;
Soto, Carolina ;
Rabiei, Pejman ;
Kamali, Arash ;
Ballester, Leomar Y. ;
Esquenazi, Yoshua ;
Zhu, Jay-Jiguang ;
Riascos, Roy Francisco .
FRONTIERS IN NEUROLOGY, 2019, 10
[5]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[6]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[7]   Robustness of radiomic features in magnetic resonance imaging: review and a phantom study [J].
Cattell, Renee ;
Chen, Shenglan ;
Huang, Chuan .
VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2019, 2 (01)
[8]   Neuroimaging in Neuro-Oncology [J].
Cha, Soonmee .
NEUROTHERAPEUTICS, 2009, 6 (03) :465-477
[9]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207
[10]  
Chaurasia K., 2013, BRIEF REV TEXTURE AN