High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs

被引:31
作者
Hoang, Son [1 ,2 ]
Lu, Xingxu [1 ,2 ]
Tang, Wenxiang [1 ,2 ]
Wang, Sibo [1 ,2 ]
Du, Shoucheng [1 ,2 ]
Nam, Chang-Yong [3 ]
Ding, Yong [4 ]
Vinluan, Rodrigo D., III [5 ]
Zheng, Jie [5 ]
Gao, Pu-Xian [1 ,2 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, 97 North Eagleville Rd, Storrs, CT 06269 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[5] Univ Texas Dallas, Dept Chem & Biochem, Richardson, TX 75080 USA
基金
美国国家科学基金会;
关键词
TiO2; Nanowire array; Ultralow PGM; Diesel oxidation catalyst; Upstream promoter; MONOLITHIC CATALYSTS; CO OXIDATION; SULFUR-RESISTANCE; NO OXIDATION; TIO2; EFFICIENCY; REDUCTION; HYDROGEN; ANATASE; MODEL;
D O I
10.1016/j.cattod.2017.11.019
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
High performance of an ultra-low Pt loading diesel oxidation catalyst can be achieved by using a combination of novel nano-array structured support, precise control of ultrafine active Pt particles, and an addition of H-2 as a promoter into the exhausts. Highly stable mesoporous rutile TiO2 nano-array was uniformly grown on threedimensional (3-D) cordierite honeycomb monoliths using a solvothermal synthesis. Atomic layer deposition was employed for precise dispersion of ultrafine Pt particles (0.95 +/- 0.24 nm) on TiO2 nano-array with a Pt loading of 1.1 g/ft(3). Despite low Pt loading, the Pt/TiO2 nano-array catalyst shows impressive low-temperature oxidation reactivity, with the conversion of CO and total hydrocarbon (THC) reaching 50% at 224 and 285 degrees C, respectively, in the clean diesel combustion (CDC) simulated exhaust conditions. The excellent activity is attributed to the unique nano-array structure that promotes gas-solid interaction and ultra-small Pt particle dispersion that increase surface Pt atoms. We also demonstrate that addition of more H2 into the exhaust can lower light-off temperature for CO and THC by up to similar to 60 degrees C and similar to 30 degrees C, respectively.
引用
收藏
页码:2 / 10
页数:9
相关论文
共 51 条
[1]   Mass transport and catalytic activity in hierarchical/non-hierarchical and internal/external nanostructures: A novel comparison using 3D simulation [J].
Al-Halhouli, Mohammad ;
Kieninger, Jochen ;
Yurchenko, Olena ;
Urban, Gerald .
APPLIED CATALYSIS A-GENERAL, 2016, 517 :12-20
[2]   Evaluation of H2 effect on NO oxidation over a diesel oxidation catalyst [J].
Azis, Muhammad Mufti ;
Auvray, Xavier ;
Olsson, Louise ;
Creaser, Derek .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 179 :542-550
[3]   KINETICS OF CO OXIDATION ON SINGLE-CRYSTAL PD, PT, AND IR [J].
BERLOWITZ, PJ ;
PEDEN, CHF ;
GOODMAN, DW .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (18) :5213-5221
[4]   Experimental and kinetic study of NO oxidation on model Pt catalysts [J].
Bhatia, Divesh ;
McCabe, Robert W. ;
Harold, Michael P. ;
Balakotaiah, Vemuri .
JOURNAL OF CATALYSIS, 2009, 266 (01) :106-119
[5]   Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition [J].
Binder, Andrew J. ;
Toops, Todd J. ;
Unocic, Raymond R. ;
Parks, James E., II ;
Dai, Sheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (45) :13263-13267
[6]   Relation between crystallite size and dispersion on supported metal catalysts [J].
Borodzinski, A ;
Bonarowska, M .
LANGMUIR, 1997, 13 (21) :5613-5620
[7]   Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts [J].
Bourikas, Kyriakos ;
Kordulis, Christos ;
Lycourghiotis, Alexis .
CHEMICAL REVIEWS, 2014, 114 (19) :9754-9823
[8]  
Carranza R, 1999, CHEM PROCESS, V62, P47
[9]   Manganese Oxide Nanoarray-Based Monolithic Catalysts: Tunable Morphology and High Efficiency for CO Oxidation [J].
Chen, Sheng-Yu ;
Song, Wenqiao ;
Lin, Hui-Jan ;
Wang, Sibo ;
Biswas, Sourav ;
Mollahosseini, Mehdi ;
Kuo, Chung-Hao ;
Gao, Pu-Xian ;
Suib, Steven L. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (12) :7834-7842
[10]  
Du S., 2017, Emission Contr. Sci. Technol, V3, P18, DOI DOI 10.1007/S40825-016-0054-Y