Cell Motility and Mechanics in Three-Dimensional Collagen Matrices

被引:272
作者
Grinnell, Frederick [1 ]
Petroll, W. Matthew [2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Cell Biol, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Dept Ophthalmol, Dallas, TX 75390 USA
来源
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 26 | 2010年 / 26卷
关键词
biomechanics; extracellular matrix remodeling; Rho GTPases; tensional homeostasis; tissue engineering; wound healing; SKIN-EQUIVALENT TISSUE; GROWTH-FACTOR; GRANULATION-TISSUE; WOUND CONTRACTION; EXTRACELLULAR-MATRIX; CORNEAL FIBROBLASTS; GEL CONTRACTION; ISOMETRIC CONTRACTION; TENSIONAL HOMEOSTASIS; DYNAMIC ASSESSMENT;
D O I
10.1146/annurev.cellbio.042308.113318
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Fibrous connective tissues provide mechanical support and frameworks for other tissues of the body and play an integral role in normal tissue physiology and pathology. Three-dimensional collagen matrices exhibit mechanical and structural features that resemble fibrous connective tissue and have become an important model system to study cell behavior in a tissue-like environment. This review focuses on motile and mechanical interactions between cells especially fibroblasts and collagen matrices. We describe several matrix contraction models, the interactions between fibroblasts and collagen fibrils at global and subcellular levels, unique features of mechanical feedback between cells and the matrix, and the impact of the cell-matrix tension state on cell morphology and mechanical behavior. We develop a conceptual framework to explain the balance between cell migration and collagen translocation including the concept of promigratory and procontractile growth factor environments. Finally, we review the significance of these concepts for the physiology of wound repair.
引用
收藏
页码:335 / 361
页数:27
相关论文
共 180 条
[1]   Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis [J].
Aarabi, Shahram ;
Bhatt, Kirit A. ;
Shi, Yubin ;
Paterno, Josemaria ;
Chang, Edward I. ;
Loh, Shang A. ;
Holmes, Jeffrey W. ;
Longaker, Michael T. ;
Yee, Herman ;
Gurtner, Geoffrey C. .
FASEB JOURNAL, 2007, 21 (12) :3250-3261
[2]  
ABERCROMBIE M, 1960, J ANAT, V94, P170
[3]   New developments in fibroblast and myofibroblast biology: Implications for fibrosis and scleroderma [J].
Abraham D.J. ;
Eckes B. ;
Rajkumar V. ;
Krieg T. .
Current Rheumatology Reports, 2007, 9 (2) :136-143
[4]   Biomechanical and biochemical characteristics of a human fibroblast-produced and remodeled matrix [J].
Ahlfors, Jan-Eric W. ;
Billiar, Kristen L. .
BIOMATERIALS, 2007, 28 (13) :2183-2191
[5]   BEHAVIOR OF FIBROBLASTS FROM DEVELOPING AVIAN CORNEA - MORPHOLOGY AND MOVEMENT INSITU AND INVITRO [J].
BARD, JBL ;
HAY, ED .
JOURNAL OF CELL BIOLOGY, 1975, 67 (02) :400-418
[6]   THE FIBROBLAST-POPULATED COLLAGEN MICROSPHERE ASSAY OF CELL TRACTION FORCE .2. MEASUREMENT OF THE CELL TRACTION PARAMETER [J].
BAROCAS, VH ;
MOON, AG ;
TRANQUILLO, RT .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1995, 117 (02) :161-170
[7]   An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance [J].
Barocas, VH ;
Tranquillo, RT .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1997, 119 (02) :137-145
[8]   LIVING TISSUE FORMED INVITRO AND ACCEPTED AS SKIN-EQUIVALENT TISSUE OF FULL THICKNESS [J].
BELL, E ;
EHRLICH, HP ;
BUTTLE, DJ ;
NAKATSUJI, T .
SCIENCE, 1981, 211 (4486) :1052-1054
[9]   PRODUCTION OF A TISSUE-LIKE STRUCTURE BY CONTRACTION OF COLLAGEN LATTICES BY HUMAN-FIBROBLASTS OF DIFFERENT PROLIFERATIVE POTENTIAL INVITRO [J].
BELL, E ;
IVARSSON, B ;
MERRILL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1274-1278
[10]  
BELLOWS CG, 1982, J CELL SCI, V58, P125