Composition-dependent slip planarity in mechanically-stable face centered cubic complex concentrated alloys and its mechanical effects

被引:61
作者
He, Feng [1 ,2 ]
Wei, Shaolou [1 ]
Cann, Jaclyn Leigh [1 ]
Wang, Zhijun [2 ]
Wang, Jincheng [2 ]
Tasan, Cemal Cem [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex-concentrated alloys; Short range ordering; Planar slip; Ductility; HIGH-ENTROPY ALLOY; SHORT-RANGE ORDER; STACKING-FAULT ENERGY; DEFORMATION MECHANISMS; SUBSTRUCTURE EVOLUTION; DISLOCATION; STRENGTH; PHASE; TWIP; DUCTILITY;
D O I
10.1016/j.actamat.2021.117314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In metallic materials, enhancing strain hardening capacity positively affects ductility, fracture toughness, ultimate tensile strength, and other properties. Thus, activating mechanically-induced martensitic transformation or twinning mechanisms has been a captivating goal in the design of steels, titanium alloys, cobalt alloys, complex concentrated alloys (CCAs) and others, through modifications to composition or thermo-mechanical processing. Here instead, we focus on the most basic strain hardening effect, arising from dislocation kinematics, and interactions. For this purpose, we designed two model face centered cubic (FCC) CCAs, Ni2CoCrFe and Ni2CoCrFeTi0.2Al0.1. Both alloys develop single, mechanically-stable, FCC phase microstructures upon processing. Mechanical tests of these alloys reveal that the Al and Ti addition enhances the strain hardening capacity, leading to significant increases in strength and ductility. Microstructure analyses based on electron channeling contrast imaging (ECCI), electron-backscatter diffraction (EBSD), and transmission electron microscopy (TEM) confirm the absence of mechanically-induced twinning and martensitic transformation effects, revealing instead a transition from wavy slip to planar slip. In-situ synchrotron XRD tensile tests are used to discuss the origin of the dislocation glide mode transition and the effects on strain hardening. Based on these analyses, the increased degree of shortrange ordering (SRO), rather than the changes in stacking fault energy (SFE), is proposed as the main cause for this transition, and the corresponding effects on strain hardenability. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 70 条
[1]   Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy [J].
Agustianingrum, Maya Putri ;
Yoshida, Shuhei ;
Tsuji, Nobuhiro ;
Park, Nokeun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 :866-872
[2]   OVERVIEW NO-96 - EVOLUTION OF FCC DEFORMATION STRUCTURES IN POLYSLIP [J].
BAY, B ;
HANSEN, N ;
HUGHES, DA ;
KUHLMANNWILSDORF, D .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (02) :205-219
[3]   Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys [J].
Bracq, G. ;
Laurent-Brocq, M. ;
Varvenne, C. ;
Perriere, L. ;
Curtin, W. A. ;
Joubert, J. -M. ;
Guillot, I. .
ACTA MATERIALIA, 2019, 177 :266-279
[4]   Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J].
Cai, Biao ;
Liu, Bin ;
Kabra, Saurabh ;
Wang, Yiqiang ;
Yan, Kun ;
Lee, Peter D. ;
Liu, Yong .
ACTA MATERIALIA, 2017, 127 :471-480
[5]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[6]   Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds [J].
Choudhuri, Deep ;
Gwalani, Bharat ;
Gorsse, Stephane ;
Komarasamy, Mageshwari ;
Mantri, Srinivas A. ;
Srinivasan, Srivilliputhur G. ;
Mishra, Rajiv S. ;
Banerjee, Rajarshi .
ACTA MATERIALIA, 2019, 165 :420-430
[7]   SOLID-SOLUTION HARDENING OF COPPER CRYSTALS [J].
CIZEK, L ;
KRATOCHVIL, P ;
SMOLA, B .
JOURNAL OF MATERIALS SCIENCE, 1974, 9 (09) :1517-1520
[8]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133
[9]   Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J].
Ding, Jun ;
Yu, Qin ;
Asta, Mark ;
Ritchie, Robert O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) :8919-8924
[10]   Tuning element distribution, structure and properties by composition in high-entropy alloys [J].
Ding, Qingqing ;
Zhang, Yin ;
Chen, Xiao ;
Fu, Xiaoqian ;
Chen, Dengke ;
Chen, Sijing ;
Gu, Lin ;
Wei, Fei ;
Bei, Hongbin ;
Gao, Yanfei ;
Wen, Minru ;
Li, Jixue ;
Zhang, Ze ;
Zhu, Ting ;
Ritchie, Robert O. ;
Yu, Qian .
NATURE, 2019, 574 (7777) :223-+