Perturbative extraction of gravitational waveforms generated with numerical relativity

被引:47
|
作者
Nakano, Hiroyuki [1 ,2 ,3 ]
Healy, James [2 ,3 ]
Lousto, Carlos O. [2 ,3 ]
Zlochower, Yosef [2 ,3 ]
机构
[1] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[2] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 10期
基金
美国国家科学基金会;
关键词
ROTATING BLACK-HOLE; METRIC PERTURBATIONS; HARMONICS; PARTICLE; GAUGE; FIELD;
D O I
10.1103/PhysRevD.91.104022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive an analytical expression for extracting the gravitational waveforms at null infinity using the Weyl scalar psi(4) measured at a finite radius. Our expression is based on a series solution in orders of 1/r to the equations for gravitational perturbations about a spinning black hole. We compute this expression to order 1/r(2) and include the spin parameter a of the Kerr background. We test the accuracy of this extraction procedure by measuring the waveform for a merging black-hole binary at ten different extraction radii (in the range r/M = 75-190 and for three different resolutions in the convergence regime. We find that the extraction formula provides a set of values for the radiated energy and momenta that at finite extraction radii converges towards the expected values with increasing resolution, which is not the case for the "raw" waveform at finite radius. We also examine the phase and amplitude errors in the waveform as a function of observer location and again observe the benefits of using our extraction formula. The leading corrections to the phase are O(1/r) and to the amplitude are O(1/r(2)). This method provides a simple and practical way of estimating the waveform at infinity, and may be especially useful for scenarios such as well separated binaries, where the radiation zone is far from the sources, that would otherwise require extended simulation grids in order to extrapolate the raw waveform to infinity. Thus this method saves important computational resources and provides an estimate of errors.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Numerical relativity multimodal waveforms using absorbing boundary conditions
    Buchman, Luisa T.
    Duez, Matthew D.
    Morales, Marlo
    Scheel, Mark A.
    Kostersitz, Tim M.
    Evans, Andrew M.
    Mitman, Keefe
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (17)
  • [32] Fixing the BMS frame of numerical relativity waveforms with BMS charges
    Mitman, Keefe
    Stein, Leo C.
    Boyle, Michael
    Deppe, Nils
    Hebert, Francois
    Kidder, Lawrence E.
    Moxon, Jordan
    Scheel, Mark A.
    Teukolsky, Saul A.
    Throwe, William
    Vu, Nils L.
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [33] Gravitational-wave echoes from numerical-relativity waveforms via spacetime construction near merging compact objects
    Ma, Sizheng
    Wang, Qingwen
    Deppe, Nils
    Hebert, Francois
    Kidder, Lawrence E.
    Moxon, Jordan
    Throwe, William
    Vu, Nils L.
    Scheel, Mark A.
    Chen, Yanbei
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [34] The gravitational wave strain in the characteristic formalism of numerical relativity
    Nigel T. Bishop
    Christian Reisswig
    General Relativity and Gravitation, 2014, 46
  • [35] Gravitational wave extraction and outer boundary conditions by perturbative matching
    Abrahams, AM
    Rezzolla, L
    Rupright, ME
    Anderson, A
    Anninos, P
    Baumgarte, TW
    Bishop, NT
    Brandt, SR
    Browne, JC
    Camarda, K
    Choptuik, MW
    Cook, GB
    Correll, RR
    Evans, CR
    Finn, LS
    Fox, GC
    Gomez, R
    Haupt, T
    Huq, MF
    Kidder, LE
    Klasky, SA
    Laguna, P
    Landry, W
    Lehner, L
    Lenaghan, J
    Marsa, RL
    Masso, J
    Matzner, RA
    Mitra, S
    Papadopoulos, P
    Parashar, M
    Saied, F
    Saylor, PE
    Scheel, MA
    Seidel, E
    Shapiro, SL
    Shoemaker, D
    Smarr, L
    Szilagyi, B
    Teukolsky, SA
    van Putten, MHPM
    Walker, P
    Winicour, J
    York, JW
    PHYSICAL REVIEW LETTERS, 1998, 80 (09) : 1812 - 1815
  • [36] The gravitational wave strain in the characteristic formalism of numerical relativity
    Bishop, Nigel T.
    Reisswig, Christian
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (01) : 1 - 13
  • [37] Computation of displacement and spin gravitational memory in numerical relativity
    Mitman, Keefe
    Moxon, Jordan
    Scheel, Mark A.
    Teukolsky, Saul A.
    Boyle, Michael
    Deppe, Nils
    Kidder, Lawrence E.
    Throwe, William
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [38] Binary black holes, gravitational waves, and numerical relativity
    Centrella, Joan M.
    Baker, John G.
    Boggs, William D.
    Kelly, Bernard J.
    McWilliams, Sean T.
    van Meter, James R.
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [40] Accumulating Errors in Tests of General Relativity with Gravitational Waves: Overlapping Signals and Inaccurate Waveforms
    Hu, Qian
    Veitch, John
    ASTROPHYSICAL JOURNAL, 2023, 945 (02):