Perturbative extraction of gravitational waveforms generated with numerical relativity

被引:47
|
作者
Nakano, Hiroyuki [1 ,2 ,3 ]
Healy, James [2 ,3 ]
Lousto, Carlos O. [2 ,3 ]
Zlochower, Yosef [2 ,3 ]
机构
[1] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[2] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 10期
基金
美国国家科学基金会;
关键词
ROTATING BLACK-HOLE; METRIC PERTURBATIONS; HARMONICS; PARTICLE; GAUGE; FIELD;
D O I
10.1103/PhysRevD.91.104022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive an analytical expression for extracting the gravitational waveforms at null infinity using the Weyl scalar psi(4) measured at a finite radius. Our expression is based on a series solution in orders of 1/r to the equations for gravitational perturbations about a spinning black hole. We compute this expression to order 1/r(2) and include the spin parameter a of the Kerr background. We test the accuracy of this extraction procedure by measuring the waveform for a merging black-hole binary at ten different extraction radii (in the range r/M = 75-190 and for three different resolutions in the convergence regime. We find that the extraction formula provides a set of values for the radiated energy and momenta that at finite extraction radii converges towards the expected values with increasing resolution, which is not the case for the "raw" waveform at finite radius. We also examine the phase and amplitude errors in the waveform as a function of observer location and again observe the benefits of using our extraction formula. The leading corrections to the phase are O(1/r) and to the amplitude are O(1/r(2)). This method provides a simple and practical way of estimating the waveform at infinity, and may be especially useful for scenarios such as well separated binaries, where the radiation zone is far from the sources, that would otherwise require extended simulation grids in order to extrapolate the raw waveform to infinity. Thus this method saves important computational resources and provides an estimate of errors.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Fixing the BMS frame of numerical relativity waveforms
    Mitman, Keefe
    Khera, Neev
    Iozzo, Dante A. B.
    Stein, Leo C.
    Boyle, Michael
    Deppe, Nils
    Kidder, Lawrence E.
    Moxon, Jordan
    Pfeiffer, Harald P.
    Scheel, Mark A.
    Teukolsky, Saul A.
    Throwe, William
    PHYSICAL REVIEW D, 2021, 104 (02)
  • [22] GRAVITATIONAL-RADIATION, GRAVITATIONAL COLLAPSE, AND NUMERICAL RELATIVITY
    PIRAN, T
    STARK, RF
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1986, 470 : 247 - 266
  • [23] Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project
    Aylott, Benjamin
    Baker, John G.
    Boggs, William D.
    Boyle, Michael
    Brady, Patrick R.
    Brown, Duncan A.
    Bruegmann, Bernd
    Buchman, Luisa T.
    Buonanno, Alessandra
    Cadonati, Laura
    Camp, Jordan
    Campanelli, Manuela
    Centrella, Joan
    Chatterji, Shourov
    Christensen, Nelson
    Chu, Tony
    Diener, Peter
    Dorband, Nils
    Etienne, Zachariah B.
    Faber, Joshua
    Fairhurst, Stephen
    Farr, Benjamin
    Fischetti, Sebastian
    Guidi, Gianluca
    Goggin, Lisa M.
    Hannam, Mark
    Herrmann, Frank
    Hinder, Ian
    Husa, Sascha
    Kalogera, Vicky
    Keppel, Drew
    Kidder, Lawrence E.
    Kelly, Bernard J.
    Krishnan, Badri
    Laguna, Pablo
    Lousto, Carlos O.
    Mandel, Ilya
    Marronetti, Pedro
    Matzner, Richard
    McWilliams, Sean T.
    Matthews, Keith D.
    Mercer, R. Adam
    Mohapatra, Satyanarayan R. P.
    Mroue, Abdul H.
    Nakano, Hiroyuki
    Ochsner, Evan
    Pan, Yi
    Pekowsky, Larne
    Pfeiffer, H. Arald P.
    Pollney, Denis
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (16)
  • [24] Numerical Relativity and the Discovery of Gravitational Waves
    Eisenstein, Robert A.
    ANNALEN DER PHYSIK, 2019, 531 (08)
  • [25] Gravitational-wave data analysis overview of compact binary searches using waveforms inspired by numerical relativity
    Hanna, Chad
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (11)
  • [26] Perturbative and numerical approaches to gravitational waves - Preface
    Nakamura, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1997, (128): : I - II
  • [27] Consistency of post-Newtonian waveforms with numerical relativity
    Baker, John G.
    van Meter, James R.
    McWilliams, Sean T.
    Centrella, Joan
    Kelly, Bernard J.
    PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [28] Fundamentals of numerical relativity for gravitational wave sources
    Bruegmann, Bernd
    SCIENCE, 2018, 361 (6400) : 366 - 371
  • [29] Developments in numerical relativity and gravitational wave observations
    Bishop, Nigel T.
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 3309 - 3315
  • [30] Extraction of gravitational-wave energy in higher dimensional numerical relativity using the Weyl tensor
    Cook, William G.
    Sperhake, Ulrich
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (03)