Inducing Sparsity and Shrinkage in Time-Varying Parameter Models
被引:53
|
作者:
Huber, Florian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salzburg, Salzburg Ctr European Union Studies, Monchsberg 2A, A-5020 Salzburg, AustriaUniv Salzburg, Salzburg Ctr European Union Studies, Monchsberg 2A, A-5020 Salzburg, Austria
Huber, Florian
[1
]
Koop, Gary
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strathclyde, Dept Econ, Glasgow, Lanark, ScotlandUniv Salzburg, Salzburg Ctr European Union Studies, Monchsberg 2A, A-5020 Salzburg, Austria
Koop, Gary
[2
]
Onorante, Luca
论文数: 0引用数: 0
h-index: 0
机构:
European Cent Bank, Frankfurt, GermanyUniv Salzburg, Salzburg Ctr European Union Studies, Monchsberg 2A, A-5020 Salzburg, Austria
Onorante, Luca
[3
]
机构:
[1] Univ Salzburg, Salzburg Ctr European Union Studies, Monchsberg 2A, A-5020 Salzburg, Austria
Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when the number of variables in the model is large. Global-local priors are increasingly used to induce shrinkage in such models. But the estimates produced by these priors can still have appreciable uncertainty. Sparsification has the potential to reduce this uncertainty and improve forecasts. In this article, we develop computationally simple methods which both shrink and sparsify TVP models. In a simulated data exercise, we show the benefits of our shrink-then-sparsify approach in a variety of sparse and dense TVP regressions. In a macroeconomic forecasting exercise, we find our approach to substantially improve forecast performance relative to shrinkage alone.
机构:
Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90007 USAUniv Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90007 USA
Elnakeeb, Amr
Mitra, Urbashi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90007 USAUniv Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90007 USA
Mitra, Urbashi
2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP),
2018,
: 3894
-
3898