Adaptively preconditioned GMRES algorithms

被引:89
作者
Baglama, J [1 ]
Calvetti, D
Golub, GH
Reichel, L
机构
[1] Texas Tech Univ, Dept Math, Lubbock, TX 79409 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[4] Kent State Univ, Dept Math & Comp Sci, Kent, OH 44242 USA
关键词
iterative method; preconditioner; nonsymmetric linear system; Arnoldi process;
D O I
10.1137/S1064827596305258
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The restarted GMRES algorithm proposed by Saad and Schultz [SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869] is one of the most popular iterative methods for the solution of large linear systems of equations Ax = b with a nonsymmetric and sparse matrix. This algorithm is particularly attractive when a good preconditioner is available. The present paper describes two new methods for determining preconditioners from spectral information gathered by the Arnoldi process during iterations by the restarted GMRES algorithm. These methods seek to determine an invariant subspace of the matrix A associated with eigenvalues close to the origin and to move these eigenvalues so that a higher rate of convergence of the iterative methods is achieved.
引用
收藏
页码:243 / 269
页数:27
相关论文
共 29 条
  • [2] Axelsson O., 1994, ITERATIVE SOLUTION M
  • [3] Iterative methods for the computation of a few eigenvalues of a large symmetric matrix
    Baglama, J
    Calvetti, D
    Reichel, L
    [J]. BIT NUMERICAL MATHEMATICS, 1996, 36 (03) : 400 - 421
  • [4] A NEWTON BASIS GMRES IMPLEMENTATION
    BAI, Z
    HU, D
    REICHEL, L
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1994, 14 (04) : 563 - 581
  • [5] CALVETTI D, 1993, NUMERICAL LINEAR ALGEBRA, P31
  • [6] Calvetti D., 1994, ELECTRON T NUMER ANA, V2, P1
  • [7] CHAPMAN A, 1995, 95181 UMSI
  • [8] da Cunha R.D., 1994, ADV COMPUT MATH, V2, P261
  • [9] NUMERICAL STABILITY OF GMRES
    DRKOSOVA, J
    GREENBAUM, A
    ROZLOZNIK, M
    STRAKOS, Z
    [J]. BIT, 1995, 35 (03): : 309 - 330
  • [10] ELMAN HC, 1986, LECT NOTES MATH, V1230, P103