ON PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS

被引:4
作者
Abe, N. [1 ]
Henniart, G. [2 ,3 ]
Vigneras, M. -F. [4 ]
机构
[1] Hokkaido Univ, Dept Math, Kita Ku, Kita 10,Nishi 8, Sapporo, Hokkaido 0600810, Japan
[2] Univ Paris Sud, Lab Math Orsay, F-91405 Orsay, France
[3] CNRS, F-91405 Orsay, France
[4] Inst Math Jussieu, 175 Rue Chevaleret, F-75013 Paris, France
关键词
Parabolic induction; pro-p Iwahori Hecke algebra; HECKE ALGEBRA;
D O I
10.1090/ert/518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a locally compact field with residue characteristic p, and let G be a connected reductive F-group. Let Li be a pro-p Iwahori subgroup of G = G(F). Fix a commutative ring R. If pi is a smooth R[G1-representation, the space of invariants pi(U) is a right module over the Hecke algebra H of U in G. Let P be a parabolic subgroup of G with a Levi decomposition P = MN adapted to U. We complement a previous investigation of Ollivier-Vigneras on the relation between taking U-invariants and various functor like Ind(q)(G), and right and left adjoints. More precisely the authors' previous work with Herzig introduced representations I-G(P, sigma, Q) where sigma is a smooth representation of M extending, trivially on N, to a larger parabolic subgroup P(sigma), and Q is a parabolic subgroup between P and P(sigma). Here we relate I-G(P,sigma,Q)(u) to an analogously defined H-module I-H(P, sigma(u)m,Q), where U-M = U boolean AND M and sigma(u)m is seen as a module over the Hecke algebra H-M of U-M in M. In the reverse direction, if V is a right Wm-module, we relate LH(P, V, Q) 0 c-Indi 1 to /G (P, V Mc-Indtilm 1, Q). As an application we prove that if R is an algebraically closed field of characteristic p, and it is an irreducible admissible representation of G, then the contragredient of it is 0 unless it has finite dimension.
引用
收藏
页码:119 / 159
页数:41
相关论文
共 15 条
[1]   A CLASSIFICATION OF IRREDUCIBLE ADMISSIBLE MOD p REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS [J].
Abe, N. ;
Henniart, G. ;
Herzig, F. ;
Vigneras, M. -F. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (02) :495-559
[2]  
Abe N., T AMS
[3]  
Abe N., ARXIV161201312
[4]   Modulo p parabolic induction of pro-p-Iwahori Hecke algebra [J].
Abe, Noriyuki .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 749 :1-64
[5]  
Bruhat F., 1972, Publications Mathematiques, V41, P5
[6]  
Carter Roger W., 1985, Conjugacy classes and complex characters
[7]   ON SPECIAL REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS [J].
Grosse-Kloenne, Elmar .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (12) :2179-2216
[8]   Smooth duality in natural characteristic [J].
Kohlhaase, Jan .
ADVANCES IN MATHEMATICS, 2017, 317 :1-49
[9]   REPRESENTATIONS OF STEINBERG MODULO ρ FOR A GROUP REDUCTIVE ON A LOCAL BODY [J].
Ly, Tony .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 277 (02) :425-462
[10]  
Ollivier R., ARXIV170304921