Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

被引:11
|
作者
Zhang, Pei-xun [1 ]
Jiang, Xiao-rui [2 ]
Wang, Lei [2 ]
Chen, Fang-min [2 ]
Xu, Lin [2 ]
Huang, Fei [3 ]
机构
[1] Peking Univ, Peoples Hosp, Dept Trauma & Orthoped, Beijing 100871, Peoples R China
[2] Binzhou Med Univ, Affiliated Yantai Hosp, Dept Orthoped, Yantai, Shandong, Peoples R China
[3] Binzhou Med Univ, Dept Human Anat, Yantai, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
nerve regeneration; bone marrow mesenchymal stem cells; bone; osteoblasts; ganglion; spine; neurons; co-culture techniques; proliferation; differentiation; real-time quantitative PCR; NSFC grants; neural regeneration; SYMPATHETIC-NERVOUS-SYSTEM; GENE-RELATED PEPTIDE; SUBSTANCE-P; IMMUNOREACTIVE NERVES; RAT; INNERVATION; METABOLISM; MECHANISMS; RECEPTORS;
D O I
10.4103/1673-5374.150717
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Preliminary animal experiments have confirmed that sensory nerve fibers promote osteoblast differentiation, but motor nerve fibers have no promotion effect. Whether sensory neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells remains unclear. No results at the cellular level have been reported. In this study, dorsal root ganglion neurons (sensory neurons) from Sprague-Dawley fetal rats were co-cultured with bone marrow mesenchymal stem cells transfected with green fluorescent protein 3 weeks after osteogenic differentiation in vitro, while osteoblasts derived from bone marrow mesenchymal stem cells served as the control group. The rat dorsal root ganglion neurons promoted the proliferation of bone marrow mesenchymal stem cell-derived osteoblasts at 3 and 5 days of co-culture, as observed by fluorescence microscopy. The levels of mRNAs for osteogenic differentiation-related factors (including alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2) in the co-culture group were higher than those in the control group, as detected by real-time quantitative PCR. Our findings indicate that dorsal root ganglion neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, which provides a theoretical basis for in vitro experiments aimed at constructing tissue-engineered bone.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [1] Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells
    Pei-xun Zhang
    Xiao-rui Jiang
    Lei Wang
    Fang-min Chen
    Lin Xu
    Fei Huang
    Neural Regeneration Research, 2015, 10 (01) : 119 - 123
  • [2] Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells
    Wang, Yuli
    Yin, Ying
    Jiang, Fei
    Chen, Ning
    JOURNAL OF MOLECULAR HISTOLOGY, 2015, 46 (01) : 13 - 20
  • [3] Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells
    Yuli Wang
    Ying Yin
    Fei Jiang
    Ning Chen
    Journal of Molecular Histology, 2015, 46 : 13 - 20
  • [4] Tilianin Promotes the Proliferation and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Xue, Zhixing
    Yang, Jin
    Yu, Panfeng
    CURRENT TOPICS IN NUTRACEUTICAL RESEARCH, 2022, 20 (02) : 259 - 264
  • [5] Effects of rifampicin on osteogenic differentiation and proliferation of human mesenchymal stem cells in the bone marrow
    Zhang, Z.
    Wang, X.
    Luo, F.
    Yang, H.
    Hou, T.
    Zhou, Q.
    Dai, F.
    He, Q.
    Xu, J.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (03) : 6398 - 6410
  • [6] Cajanine promotes osteogenic differentiation and proliferation of human bone marrow mesenchymal stem cells
    Zhao, Zi-Yi
    Yang, Lei
    Mu, Xiaohong
    Xu, Lin
    Yu, Xing
    Jiao, Yong
    Zhang, Xiaozhe
    Fu, Lingling
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2019, 28 (01): : 45 - 50
  • [7] Diabetes impairs osteogenic differentiation of bone marrow mesenchymal stem cells
    Chiva-Blanch, G.
    Arderiu, G.
    Vilahur, G.
    Badimon, L.
    CARDIOVASCULAR RESEARCH, 2022, 118 (SUPPL 1)
  • [8] Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells
    Jicheng Wang
    Shizhang Liu
    Jingyuan Li
    Song Zhao
    Zhi Yi
    Stem Cell Research & Therapy, 10
  • [9] Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells
    Mahmoud, Nadia S.
    Ahmed, Hanaa H.
    Mohamed, Mohamed R.
    Amr, Khalda S.
    Aglan, Hadeer A.
    Ali, Mohamed A. M.
    Tantawy, Mohamed A.
    CYTOTECHNOLOGY, 2020, 72 (01) : 1 - 22
  • [10] Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells
    Wang, Jicheng
    Liu, Shizhang
    Li, Jingyuan
    Zhao, Song
    Yi, Zhi
    STEM CELL RESEARCH & THERAPY, 2019, 10 (1)