ON THE LINEAR WAVE REGIME OF THE GROSS-PITAEVSKII EQUATION

被引:11
作者
Bethuel, Fabrice [1 ]
Danchin, Raphael [2 ]
Smets, Didier [1 ]
机构
[1] Univ Paris 06, Lab JL Lions, UMR 7598, F-75013 Paris, France
[2] Univ Paris Est, LAMA, UMR 8050, F-94010 Creteil, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2010年 / 110卷
关键词
NONLINEAR SCHRODINGER-EQUATION; SEMICLASSICAL LIMIT; CAUCHY-PROBLEM; DYNAMICS; INFINITY; DECAY;
D O I
10.1007/s11854-010-0008-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study long-wavelength asymptotics for the Gross-Pitaevskii equation corresponding to perturbations of a constant state of modulus one. We exhibit lower bounds on the first occurrence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.
引用
收藏
页码:297 / 338
页数:42
相关论文
共 33 条
  • [1] WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity
    Alazard, Thomas
    Carles, Remi
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03): : 959 - 977
  • [2] On the well-posedness for the Euler-Korteweg model in several space dimensions
    Benzoni-Gavage, S.
    Danchin, R.
    Descombes, S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) : 1499 - 1579
  • [3] Bethuel F, 2007, DIFFER INTEGRAL EQU, V20, P325
  • [4] Bethuel F, 2008, REV MAT IBEROAM, V24, P671
  • [5] On the Korteweg-de Vries Long-Wave Approximation of the Gross-Pitaevskii Equation I
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    Smets, Didier
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (14) : 2700 - 2748
  • [6] BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
  • [7] Carles R., 2008, Semi-Classical Analysis for Nonlinear Schrodinger Equations
  • [8] Cazenave T., 1998, OXFORD LECT SERIES M, V13
  • [9] Geometric Optics and Boundary Layers for Nonlinear-Schrodinger Equations
    Chiron, D.
    Rousset, F.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (02) : 503 - 546
  • [10] CHIRON D, KDV KP I LIMIT NONLI