3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction

被引:163
作者
Zhou, Xuejun [1 ]
Bai, Zhengyu [2 ]
Wu, Mingjie [1 ]
Qiao, Jinli [1 ,2 ]
Chen, Zhongwei [3 ]
机构
[1] Donghua Univ, Coll Environm Sci & Engn, Shanghai 201620, Peoples R China
[2] Henan Normal Univ, Key Lab Green Chem Media & React, Innovat Ctr Henan Prov Green Mfg Fine Chem, Minist Educ,Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[3] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
ACTIVE-SITES; RECENT PROGRESS; FUEL-CELL; CATHODE CATALYSTS; FE/N/C CATALYSTS; NITROGEN; CARBON; ELECTROCATALYSTS; ENERGY; HYBRID;
D O I
10.1039/c4ta06538g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped graphene materials have been demonstrated as promising alternative catalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries due to their relatively high activity and good stability in alkaline solutions. However, they suffer from low catalytic activity in acid medium. Herein, we have developed an efficient ORR catalyst based on nitrogen doped porous graphene foams (PNGFs) using a hard templating approach. The obtained catalyst exhibits both remarkable ORR activity and long term stability in both alkaline and acidic solutions, and its ORR activity is even better than that of the Pt-based catalyst in alkaline medium. Our results demonstrate a new strategy to rationally design highly efficient graphene-based non-precious catalysts for electrochemical energy devices.
引用
收藏
页码:3343 / 3350
页数:8
相关论文
共 55 条
[1]   Electrochemistry of Graphene and Related Materials [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Bonanni, Alessandra ;
Pumera, Martin .
CHEMICAL REVIEWS, 2014, 114 (14) :7150-7188
[2]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[3]   A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment [J].
Chabot, Victor ;
Higgins, Drew ;
Yu, Aiping ;
Xiao, Xingcheng ;
Chen, Zhongwei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1564-1596
[4]   Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J].
Chen, Aicheng ;
Holt-Hindle, Peter .
CHEMICAL REVIEWS, 2010, 110 (06) :3767-3804
[5]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[6]   Long-Range Electron Transfer over Graphene-Based Catalyst for High-Performing Oxygen Reduction Reactions: Importance of Size, N-doping, and Metallic Impurities [J].
Choi, Chang Hyuck ;
Lim, Hyung-Kyu ;
Chung, Min Wook ;
Park, Jong Cheol ;
Shin, Hyeyoung ;
Kim, Hyungjun ;
Woo, Seong Ihl .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (25) :9070-9077
[7]   Graphene-based macroscopic assemblies and architectures: an emerging material system [J].
Cong, Huai-Ping ;
Chen, Jia-Fu ;
Yu, Shu-Hong .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (21) :7295-7325
[8]   Potential of metal-free "graphene alloy" as electrocatalysts for oxygen reduction reaction [J].
Geng, Dongsheng ;
Ding, Ning ;
Hor, T. S. Andy ;
Liu, Zhaolin ;
Sun, Xueliang ;
Zong, Yun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :1795-1810
[9]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[10]   Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction [J].
Guo, Shaojun ;
Zhang, Sen ;
Sun, Shouheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (33) :8526-8544