ON A TIME-DEPENDENT TRANSPORT EQUATION IN A LIPSCHITZ DOMAIN

被引:5
|
作者
Girault, V. [1 ,2 ]
Scott, L. Ridgway [3 ]
机构
[1] UPMC Paris 6, UMR 7598, F-75005 Paris, France
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
transport equation; Lipschitz domain; tangential velocity;
D O I
10.1137/09077285X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness of the solution of a time-dependent transport equation with a divergence-free driving velocity that is L-1 in time and H-1 in space, in a Lipschitz domain of R-d, tangential on the boundary. The proof is done by regularization with a special mollifier.
引用
收藏
页码:1721 / 1731
页数:11
相关论文
共 50 条
  • [21] Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nanoelectronic devices
    Li, Xin-Qi
    Yan, YiJing
    PHYSICAL REVIEW B, 2007, 75 (07)
  • [22] On the solution of time-dependent transport equation with time-varying cross sections
    Abdou, MA
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 94 (02): : 189 - 199
  • [23] Exact boundary control for the wave equation in a polyhedral time-dependent domain
    Bastos, WD
    Ferreira, J
    APPLIED MATHEMATICS LETTERS, 1999, 12 (04) : 1 - 5
  • [24] Solvability of an abstract parabolic equation containing an operator with time-dependent domain
    Smagin, VV
    DIFFERENTIAL EQUATIONS, 1996, 32 (05) : 723 - 725
  • [25] GEOMETRIC CONTROL CONDITION FOR THE WAVE EQUATION WITH A TIME-DEPENDENT OBSERVATION DOMAIN
    Le Rousseau, Jerome
    Lebeau, Gilles
    Terpolilli, Peppino
    Trelat, Emmanuel
    ANALYSIS & PDE, 2017, 10 (04): : 983 - 1015
  • [26] NEW APPROACH TO SOLUTION OF TIME-DEPENDENT BOLTZMANN TRANSPORT-EQUATION
    LAW, HC
    KAO, KC
    PHYSICAL REVIEW LETTERS, 1972, 29 (10) : 625 - +
  • [27] On the Numerical Solution of the Time-Dependent Schrodinger Equation with Time-Dependent Potentials
    Rizea, M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1011 - 1015
  • [28] Symplectic Pseudospectral Time-Domain Scheme for Solving Time-Dependent Schrodinger Equation
    Shen, Jing
    Sha, Wei E. I.
    Kuang, Xiaojing
    Hu, Jinhua
    Huang, Zhixiang
    Wu, Xianliang
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2018, 66 : 109 - 118
  • [29] TIME-DEPENDENT TRANSPORT OF DUST
    HASSAN, MHA
    ELTAYEB, IA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1991, 96 (D5) : 9337 - 9339
  • [30] TIME-DEPENDENT TRANSPORT PROCESS
    PINGIWAN.A
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1969, 287 (05): : 409 - &