A knowledge-driven approach to cluster validity assessment

被引:36
作者
Bolshakova, N [1 ]
Azuaje, F
Cunningham, P
机构
[1] Univ Dublin Trinity Coll, Dept Comp Sci, Dublin 2, Ireland
[2] Univ Ulster, Sch Comp & Math, Jordanstown BT37 0QB, North Ireland
基金
爱尔兰科学基金会;
关键词
D O I
10.1093/bioinformatics/bti317
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents an approach to assessing cluster validity based on similarity knowledge extracted from the Gene Ontology.
引用
收藏
页码:2546 / 2547
页数:2
相关论文
共 6 条
[1]  
[Anonymous], 1995, P 14 INT JOINT C ART
[2]   Machaon CVE:: cluster validation for gene expression data [J].
Bolshakova, N ;
Azuaje, F .
BIOINFORMATICS, 2003, 19 (18) :2494-2495
[3]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[4]   QUADRATIC ASSIGNMENT AS A GENERAL DATA-ANALYSIS STRATEGY [J].
HUBERT, L ;
SCHULTZ, J .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1976, 29 (NOV) :190-241
[5]  
Speer N, 2004, PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, P252
[6]  
Wang HY, 2004, PROCEEDINGS OF THE 2004 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, P25