Envelope Dyadic Green's Function for Uniaxial Metamaterials

被引:2
作者
Maslovski, Stanislav I. [1 ,2 ]
Mariji, Hodjat [3 ]
机构
[1] Univ Aveiro, Inst Telecomunicacoes, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Eletron Telecomunicacoes & Informat, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[3] DEEC FCTUC, Inst Telecomunicacoes, Polo 2, P-3030290 Coimbra, Portugal
关键词
HELMHOLTZ DETERMINANT OPERATOR; SLOW LIGHT; FACTORIZATION; PROPAGATION; VELOCITY; STORAGE; MEDIA;
D O I
10.1038/s41598-019-55647-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce the concept of the envelope dyadic Green's function (EDGF) and present a formalism to study the propagation of electromagnetic fields with slowly varying amplitude (EMFSVA) in dispersive anisotropic media with two dyadic constitutive parameters: the dielectric permittivity and the magnetic permeability. We find the matrix elements of the EDGFs by applying the formalism for uniaxial anisotropic metamaterials. We present the relations for the velocity of the EMFSVA envelopes which agree with the known definition of the group velocity in dispersive media. We consider examples of propagation of the EMFSVA passing through active and passive media with the Lorentz and the Drude type dispersions, demonstrating beam focusing in hyperbolic media and superluminal propagation in media with inverted population. The results of this paper are applicable to the propagation of modulated electromagnetic fields and slowly varying amplitude fluctuations of such fields through frequency dispersive and dissipative (or active) anisotropic metamaterials. The developed approach can be also used for the analysis of metamaterial-based waveguides, filters, and delay lines.
引用
收藏
页数:14
相关论文
共 67 条
[1]  
[Anonymous], 1933, Procs. Of the First All-Union Conference on the Technological Reconstruction of the Communications Sector and the Low-Current Engineering
[2]  
[Anonymous], 1904, An Introduction to the Theory of Optics
[3]   Efficient All-Optical Switching Using Slow Light within a Hollow Fiber [J].
Bajcsy, M. ;
Hofferberth, S. ;
Balic, V. ;
Peyronel, T. ;
Hafezi, M. ;
Zibrov, A. S. ;
Vuletic, V. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[4]   Superluminal and slow light propagation in a room-temperature solid [J].
Bigelow, MS ;
Lepeshkin, NN ;
Boyd, RW .
SCIENCE, 2003, 301 (5630) :200-202
[5]   OPTICAL PULSE-PROPAGATION AT NEGATIVE GROUP VELOCITIES DUE TO A NEARBY GAIN LINE [J].
BOLDA, EL ;
GARRISON, JC ;
CHIAO, RY .
PHYSICAL REVIEW A, 1994, 49 (04) :2938-2947
[6]  
Brillouin L., 1960, Wave Propagation and Group Velocity
[7]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[8]   Memory Metamaterials [J].
Driscoll, T. ;
Kim, Hyun-Tak ;
Chae, Byung-Gyu ;
Kim, Bong-Jun ;
Lee, Yong-Wook ;
Jokerst, N. Marie ;
Palit, S. ;
Smith, D. R. ;
Di Ventra, M. ;
Basov, D. N. .
SCIENCE, 2009, 325 (5947) :1518-1521
[9]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[10]   Causality, Nonlocality, and Negative Refraction [J].
Forcella, Davide ;
Prada, Claire ;
Carminati, Remi .
PHYSICAL REVIEW LETTERS, 2017, 118 (13)