Analytic results for the planar double box integral relevant to top-pair production with a closed top loop

被引:62
作者
Adams, Luise [1 ]
Chaubey, Ekta [1 ]
Weinzierl, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, Staudinger Weg 7, D-55099 Mainz, Germany
关键词
Differential and Algebraic Geometry; Heavy Quark Physics; Perturbative QCD; DIFFERENTIAL-EQUATIONS; FEYNMAN-INTEGRALS; MULTIPLE POLYLOGARITHMS; NUMERICAL EVALUATION; MASTER INTEGRALS; MULTILOOP INTEGRALS; SUNRISE GRAPH; SELF-ENERGY; SECTOR DECOMPOSITION; RECURRENCE RELATIONS;
D O I
10.1007/JHEP10(2018)206
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this article we give the details on the analytic calculation of the master integrals for the planar double box integral relevant to top-pair production with a closed top loop. We show that these integrals can be computed systematically to all order in the dimensional regularisation parameter epsilon. This is done by transforming the system of differential equations into a form linear in epsilon, where the epsilon(0)-part is a strictly lower triangular matrix. Explicit results in terms of iterated integrals are presented for the terms relevant to NNLO calculations.
引用
收藏
页数:77
相关论文
共 127 条
[1]   Iterated elliptic and hypergeometric integrals for Feynman diagrams [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
van Hoeij, M. ;
Imamoglu, E. ;
Raab, C. G. ;
Radu, C. -S. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
[2]   Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 202 :33-112
[3]   Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2018, 121 (14)
[4]   Feynman integrals and iterated integrals of modular forms [J].
Adams, Luise ;
Weinzierl, Stefan .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) :193-251
[5]   The ε-form of the differential equations for Feynman integrals in the elliptic case [J].
Adams, Luise ;
Weinzierl, Stefan .
PHYSICS LETTERS B, 2018, 781 :270-278
[6]   Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2017, 118 (14)
[7]   The kite integral to all orders in terms of elliptic polylogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Schweitzer, Armin ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[8]   The iterated structure of the all-order result for the two-loop sunrise integral [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[9]   The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[10]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)