Bacterial Multidrug Efflux Transporters

被引:138
|
作者
Delmar, Jared A. [1 ]
Su, Chih-Chia [1 ]
Yu, Edward W. [1 ,2 ]
机构
[1] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
来源
ANNUAL REVIEW OF BIOPHYSICS, VOL 43 | 2014年 / 43卷
基金
美国国家卫生研究院;
关键词
multidrug resistance; heavy metal resistance; resistance-nodulation-cell division; CusCFBA efflux system; MEMBRANE-FUSION PROTEIN; HEAVY-METAL RESISTANCE; ESCHERICHIA-COLI K-12; CATION-PROTON ANTIPORTER; GRAM-NEGATIVE BACTERIA; N-TERMINAL REGION; CRYSTAL-STRUCTURE; PSEUDOMONAS-AERUGINOSA; NEISSERIA-GONORRHOEAE; CAMPYLOBACTER-JEJUNI;
D O I
10.1146/annurev-biophys-051013-022855
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Infections caused by bacteria are a leading cause of death worldwide. Although antibiotics remain a key clinical therapy, their effectiveness has been severely compromised by the development of drug resistance in bacterial pathogens. Multidrug efflux transporters-a common and powerful resistance mechanism-are capable of extruding a number of structurally unrelated antimicrobials from the bacterial cell, including antibiotics and toxic heavy metal ions, facilitating their survival in noxious environments. Transporters of the resistance-nodulation-cell division (RND) superfamily typically assemble as tripartite efflux complexes spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusCFBA complex, which mediates resistance to copper(I) and silver(I) ions, is the only known RND transporter specific to heavy metals. Here, we describe the current knowledge of individual pump components of the Cus system, a paradigm for efflux machinery, and speculate on how RND pumps assemble to fight diverse antimicrobials.
引用
收藏
页码:93 / 117
页数:25
相关论文
共 50 条
  • [1] Molecular architecture of the bacterial tripartite multidrug efflux pump focusing on the adaptor bridging model
    Song, Saemee
    Kim, Jin-Sik
    Lee, Kangseok
    Ha, Nam-Chul
    JOURNAL OF MICROBIOLOGY, 2015, 53 (06) : 355 - 364
  • [2] Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations
    Sun, Jingjing
    Deng, Ziqing
    Yan, Aixin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 453 (02) : 254 - 267
  • [3] Multidrug efflux transporters in the MATE family
    Kuroda, Teruo
    Tsuchiya, Tomofusa
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2009, 1794 (05): : 763 - 768
  • [4] Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview
    Huang, Lulu
    Wu, Cuirong
    Gao, Haijiao
    Xu, Chao
    Dai, Menghong
    Huang, Lingli
    Hao, Haihong
    Wang, Xu
    Cheng, Guyue
    ANTIBIOTICS-BASEL, 2022, 11 (04):
  • [5] The assembled structure of a complete tripartite bacterial multidrug efflux pump
    Symmons, Martyn F.
    Bokma, Evert
    Koronakis, Eva
    Hughes, Colin
    Koronakis, Vassilis
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (17) : 7173 - 7178
  • [6] Physiological Functions of Bacterial "Multidrug" Efflux Pumps
    Henderson, Peter J. F.
    Maher, Claire
    Elbourne, Liam D. H.
    Eijkelkamp, Bart A.
    Paulsen, Ian T.
    Hassan, Karl A.
    CHEMICAL REVIEWS, 2021, 121 (09) : 5417 - 5478
  • [7] Mechanisms of RND multidrug efflux pumps
    Nikaido, Hiroshi
    Takatsuka, Yumiko
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2009, 1794 (05): : 769 - 781
  • [8] Role of bacterial multidrug efflux pumps during infection
    Laborda, Pablo
    Molin, Soren
    Johansen, Helle Krogh
    Martinez, Jose Luis
    Hernando-Amado, Sara
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2024, 40 (07)
  • [9] Assembly and operation of bacterial tripartite multidrug efflux pumps
    Du, Dijun
    van Veen, Hendrik W.
    Luisi, Ben F.
    TRENDS IN MICROBIOLOGY, 2015, 23 (05) : 311 - 319
  • [10] Current Advances in Developing Inhibitors of Bacterial Multidrug Efflux Pumps
    Mahmood, Hannah Y.
    Jamshidi, Shirin
    Sutton, J. Mark
    Rahman, Khondaker M.
    CURRENT MEDICINAL CHEMISTRY, 2016, 23 (10) : 1062 - 1081