Multilayer perceptron and evolutionary radial basis function neural network models for discrimination of HIV-1 genomes

被引:3
|
作者
Dwivedi, Ashok Kumar [1 ]
Chouhan, Usha [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Bioinformat, Math & Comp Applicat, Bhopal 462003, India
来源
CURRENT SCIENCE | 2018年 / 115卷 / 11期
关键词
Artificial neural network; HIV-1; genome; machine learning; multilayer perceptron; HUMAN-IMMUNODEFICIENCY-VIRUS; CLASSIFICATION; RECOMBINATION; OPTIMIZATION;
D O I
10.18520/cs/v115/i11/2063-2070
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High rate of mutation and frequent recombination cause evolution of HIV-1 very diverse and adaptive. Revealing the recombination patterns in HIV-1 is a computationally intensive problem. Techniques based on phylogenetic analysis are not suitable for genome-level studies. Here we elucidate approaches based on multilayer perceptron and evolutionary radial basis function neural network for the analysis of 4130 HIV-1 genomes. These techniques show remarkable improvement over other machine learning techniques used for such classification. The models outperformed other machine learning models having 92% classification accuracy. Multilayer perceptron achieved sensitivity and specificity of 82% and 96%, whereas radial basis function neural network achieved sensitivity and specificity of 78% and 98% on tenfold cross-validation respectively.
引用
收藏
页码:2063 / 2070
页数:8
相关论文
共 50 条
  • [31] EMG Signal Classification Using Radial Basis Function Neural Network
    AlKhazzar, Ahmed Mohammed
    Raheema, Mithaq Nama
    2018 THIRD SCIENTIFIC CONFERENCE OF ELECTRICAL ENGINEERING (SCEE), 2018, : 180 - 185
  • [32] Mixed Odors Classification by Neural Network Using Radial Basis Function
    Faqih, Akhmad
    Krisnandhika, Bharasaka
    Kusumoputro, Benyamin
    2017 3RD INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2017, : 567 - 570
  • [33] A Deep Neural Network Combined with Radial Basis Function for Abnormality Classification
    Jafarpisheh, Noushin
    Zaferani, Effat J.
    Teshnehlab, Mohammad
    Karimipour, Hadis
    Parizi, Reza M.
    Srivastava, Gautam
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (06): : 2318 - 2328
  • [34] Systematic Boolean Satisfiability Programming in Radial Basis Function Neural Network
    Mansor, Mohd. Asyraf
    Jamaludin, Siti Zulaikha
    Kasihmuddin, Mohd Shareduwan
    Alzaeemi, Shehab Abdulhabib
    Basir, Md Faisal
    Sathasivam, Saratha
    PROCESSES, 2020, 8 (02)
  • [35] An efficient method to construct a radial basis function neural network classifier
    Hwang, YS
    Bang, SY
    NEURAL NETWORKS, 1997, 10 (08) : 1495 - 1503
  • [36] Semisupervised Radial Basis Function Neural Network With an Effective Sampling Strategy
    Xiao, Li-Ye
    Shao, Wei
    Jin, Fu-Long
    Wang, Bing-Zhong
    Joines, William T.
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (04) : 1260 - 1269
  • [37] A Deep Neural Network Combined with Radial Basis Function for Abnormality Classification
    Noushin Jafarpisheh
    Effat J. Zaferani
    Mohammad Teshnehlab
    Hadis Karimipour
    Reza M. Parizi
    Gautam Srivastava
    Mobile Networks and Applications, 2021, 26 : 2318 - 2328
  • [38] Stock Indices Prediction Using Radial Basis Function Neural Network
    Rout, Minakhi
    Majhi, Babita
    Mohapatra, Usha Manasi
    Mahapatra, Rosalin
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 285 - +
  • [39] Intelligent Intrusion Detection Using Radial Basis Function Neural Network
    AbuGhazleh, Alia
    Almiani, Muder
    Magableh, Basel
    Razaque, Abdul
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2019, : 200 - 208
  • [40] A fuzzy radial basis function neural network for radar target recognition
    Wang, YH
    Liu, GS
    Sun, GM
    Wang, YD
    APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS III, 1997, 3077 : 670 - 677