Multilayer perceptron and evolutionary radial basis function neural network models for discrimination of HIV-1 genomes

被引:3
|
作者
Dwivedi, Ashok Kumar [1 ]
Chouhan, Usha [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Bioinformat, Math & Comp Applicat, Bhopal 462003, India
来源
CURRENT SCIENCE | 2018年 / 115卷 / 11期
关键词
Artificial neural network; HIV-1; genome; machine learning; multilayer perceptron; HUMAN-IMMUNODEFICIENCY-VIRUS; CLASSIFICATION; RECOMBINATION; OPTIMIZATION;
D O I
10.18520/cs/v115/i11/2063-2070
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High rate of mutation and frequent recombination cause evolution of HIV-1 very diverse and adaptive. Revealing the recombination patterns in HIV-1 is a computationally intensive problem. Techniques based on phylogenetic analysis are not suitable for genome-level studies. Here we elucidate approaches based on multilayer perceptron and evolutionary radial basis function neural network for the analysis of 4130 HIV-1 genomes. These techniques show remarkable improvement over other machine learning techniques used for such classification. The models outperformed other machine learning models having 92% classification accuracy. Multilayer perceptron achieved sensitivity and specificity of 82% and 96%, whereas radial basis function neural network achieved sensitivity and specificity of 78% and 98% on tenfold cross-validation respectively.
引用
收藏
页码:2063 / 2070
页数:8
相关论文
共 50 条
  • [21] Evolutionary radial basis function network for gestational diabetes data analytics
    Moreira, Mario W. L.
    Rodrigues, Joel J. P. C.
    Kumar, Neeraj
    Al-Muhtadi, Jalal
    Korotaev, Valeriy
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 27 : 410 - 417
  • [22] Performance evaluation of multilayer perceptron, radial basis function, fuzzy inference system, and an adaptively tuned fuzzy wavelet neural network in parameter prediction of multiphase flow measurement instrumentation
    Khayat, Omid
    Afarideh, Hossein
    EXPERT SYSTEMS, 2019, 36 (03)
  • [23] An Accelerator for Classification using Radial Basis Function Neural Network
    Mohammadi, Mahnaz
    Ronge, Rohit
    Chandiramani, Jayesh Ramesh
    Nandy, Soumitra
    2015 28TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2015, : 137 - 142
  • [24] Multivariate statistical inference in a radial basis function neural network
    de Leon-Delgado, Homero
    Praga-Alej, Rolando J.
    Gonzalez-Gonzalez, David S.
    Cantu-Sifuentes, Mario
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 93 : 313 - 321
  • [25] Pattern Classification Based On Radial Basis Function Neural Network
    Zhang, Zhongwei
    2020 5TH INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA 2020), 2020, : 213 - 216
  • [26] Radial-Basis Function Neural Network Synthesis on the Basis of Decision Tree
    Subbotin, Sergey
    OPTICAL MEMORY AND NEURAL NETWORKS, 2020, 29 (01) : 7 - 18
  • [27] Evolutionary automated radial basis function neural network for multiphase flowing bottom-hole pressure prediction
    Campos, Deivid
    Wayo, Dennis Delali Kwesi
    De Santis, Rodrigo Barbosa
    Martyushev, Dmitriy A.
    Yaseen, Zaher Mundher
    Duru, Ugochukwu Ilozurike
    Saporetti, Camila M.
    Goliatt, Leonardo
    FUEL, 2024, 377
  • [28] Modeling of gas viscosity at high pressure-high temperature conditions: Integrating radial basis function neural network with evolutionary algorithms
    Rezaei, Farzaneh
    Jafari, Saeed
    Hemmati-Sarapardeh, Abdolhossein
    Mohammadi, Amir H.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [29] Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems
    Hashemi Fath A.
    Madanifar F.
    Abbasi M.
    Petroleum, 2020, 6 (01) : 80 - 91
  • [30] Evolutionary optimization using a new radial basis function network and the adjoint formulation
    Kampolis, Ioannis C.
    Papadimitriou, Dimitrios I.
    Giannakoglou, Kyriakos C.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2006, 14 (04) : 397 - 410