On the almost sure growth rate of sums of lower negatively dependent nonnegative random variables

被引:20
作者
Klesov, O
Rosalsky, A [1 ]
Volodin, AI
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Natl Tech Univ Ukraine, KPI, Dept Math Anal & Probabil Theory, UA-02056 Kiev, Ukraine
关键词
sums of lower negatively dependent random variables; nonnegative random variables; sums of independent and identically distributed random variables; almost sure growth rate;
D O I
10.1016/j.spl.2004.10.027
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
yFor a sequence of lower negatively dependent nonnegative random variables {X-n, n greater than or equal to 1}, conditions are provided under which lim(n-->infinity) Sigma(j)(=1)(n)X j/b(n) = infinity almost surely where {b(n), n greater than or equal to 1} is a nondecreasing sequence of positive constants. The results are new even when they are specialized to the case of nonnegative independent and identically distributed summands and b(n), = n(r), n greater than or equal to 1 where r > 0. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 13 条
[1]  
ADLER A, 1992, B I MATH ACAD SINICA, V20, P335
[2]  
AMINI M., 2000, J APPL MATH STOCHAST, V13, P261
[3]  
Baek J.I., 1999, J KOREAN MATH SOC, V36, P37
[4]  
CHATTERJI SD, 1969, INVENT MATH, V9, P235
[5]   THE STRONG LAW OF LARGE NUMBERS WHEN THE 1ST MOMENT DOES NOT EXIST [J].
DERMAN, C ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1955, 41 (08) :586-587
[6]   RECURRENCE SETS OF NORMED RANDOM-WALK IN RD1 [J].
ERICKSON, KB .
ANNALS OF PROBABILITY, 1976, 4 (05) :802-828
[7]   Equivalences in strong limit theorems for renewal counting processes [J].
Gut, A ;
Klesov, O ;
Steinebach, J .
STATISTICS & PROBABILITY LETTERS, 1997, 35 (04) :381-394
[8]  
KIM TS, 2001, B KOREAN MATH SOC, V38, P55
[9]   ON A THEOREM OF FELLER [J].
MARTIKAINEN, AI ;
PETROV, VV .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1980, 25 (01) :191-193
[10]   A NOTE ON THE ALMOST SURE CONVERGENCE OF SUMS OF NEGATIVELY DEPENDENT RANDOM-VARIABLES [J].
MATULA, P .
STATISTICS & PROBABILITY LETTERS, 1992, 15 (03) :209-213