Slice regular functions in several variables

被引:9
作者
Ghiloni, Riccardo [1 ]
Perotti, Alessandro [1 ]
机构
[1] Univ Trento, Dept Math, Via Sommar 14, I-38123 Trento, Italy
关键词
Slice regular functions; Functions of hypercomplex variables; Cauchy integral formula; Quaternions; Clifford algebras; Octonions; Real alternative algebras;
D O I
10.1007/s00209-022-03066-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we lay the foundations of the theory of slice regular functions in several (non-commuting) variables ranging in any real alternative *-algebra, including quaternions, octonions and Clifford algebras. This higher dimensional function theory is an extension of the classical theory of holomorphic functions of several complex variables. It is based on the construction of a family of commuting complex structures on R-2n. One of the relevant aspects of the theory is the validity of a Cauchy-type integral formula and the existence of ordered power series expansions. The theory includes all polynomials and power series with ordered variables and right coefficients in the algebra. We study the real dimension of the zero set of polynomials in the quaternionic and octonionic cases and give some results about the zero set of polynomials with Clifford coefficients. In particular, we show that a nonconstant polynomial always has a non empty zero set.
引用
收藏
页码:295 / 351
页数:57
相关论文
共 24 条
  • [1] Algebraic Properties of the Module of Slice Regular Functions in Several Quaternionic Variables
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (04) : 1581 - 1602
  • [2] Slice monogenic functions
    Colombo, Fabrizio
    Sabadini, Irene
    Struppa, Daniele C.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 385 - 403
  • [3] Ebbinghaus H.-D., 1991, NUMBERS
  • [4] A new approach to Cullen-regular functions of a quaternionic variable
    Gentili, G
    Struppa, DC
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (10) : 741 - 744
  • [5] Gentili G., 2013, SPRINGER MONOGRAPHS, DOI DOI 10.1007/978-3-642-33871-7
  • [6] A new theory of regular functions of a quaternionic variable
    Gentili, Graziano
    Struppa, Daniele C.
    [J]. ADVANCES IN MATHEMATICS, 2007, 216 (01) : 279 - 301
  • [7] REGULAR FUNCTIONS ON THE SPACE OF CAYLEY NUMBERS
    Gentili, Graziano
    Struppa, Daniele C.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (01) : 225 - 241
  • [8] Slice regular functions of several Clifford variables
    Ghiloni, R.
    Perotti, A.
    [J]. 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 734 - 738
  • [9] Slice regular functions on real alternative algebras
    Ghiloni, R.
    Perotti, A.
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1662 - 1691
  • [10] Ghiloni R., 2012, PROGR ANAL, V1, P179