Dynamic Retrospective Regression for Functional Data

被引:11
作者
Gervini, Daniel [1 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53211 USA
关键词
Time warping; Functional data analysis; Spline smoothing; Hermite spline; Curve registration; VARYING-COEFFICIENT MODELS; LINEAR-REGRESSION; CURVE REGISTRATION; SYNCHRONIZATION; PREDICTION; SPLINES; SAMPLE;
D O I
10.1080/00401706.2013.879076
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Samples of curves, or functional data, usually present phase variability in addition to amplitude variability. Existing functional regression methods do not handle phase variability in an efficient way. In this article we propose a functional regression method that incorporates phase synchronization as an intrinsic part of the model, and then attains better predictive power than ordinary linear regression in a simple and parsimonious way. The finite-sample properties of the estimators are studied by simulation. As an example of application, we analyze neuromotor data arising from a study of human lip movement. This article has supplementary materials online.
引用
收藏
页码:26 / 34
页数:9
相关论文
共 31 条
[1]  
[Anonymous], 2009, BIOSTATISTICS, V10, P32
[2]   Functional linear regression with functional response: Application to prediction of electricity consumption [J].
Antoch, Jaromir ;
Prchal, Lubos ;
De Rosa, Maria Rosaria ;
Sarda, Pascal .
FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, :23-+
[3]   Self modeling with flexible, random time transformations [J].
Brumback, LC ;
Lindstrom, MJ .
BIOMETRICS, 2004, 60 (02) :461-470
[4]   Prediction in functional linear regression [J].
Cai, T. Tony ;
Hall, Peter .
ANNALS OF STATISTICS, 2006, 34 (05) :2159-2179
[5]   SMOOTHING SPLINES ESTIMATORS FOR FUNCTIONAL LINEAR REGRESSION [J].
Crambes, Christophe ;
Kneip, Alois ;
Sarda, Pascal .
ANNALS OF STATISTICS, 2009, 37 (01) :35-72
[6]   MONOTONE PIECEWISE CUBIC INTERPOLATION [J].
FRITSCH, FN ;
CARLSON, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) :238-246
[7]   Nonparametric maximum likelihood estimation of the structural mean of a sample of curves [J].
Gervini, D ;
Gasser, T .
BIOMETRIKA, 2005, 92 (04) :801-820
[8]   Self-modelling warping functions [J].
Gervini, D ;
Gasser, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 :959-971
[9]  
Gohberg I., 2003, Basic Classes of Linear Operators
[10]   Methodology and convergence rates for functional linear regression [J].
Hall, Peter ;
Horowitz, Joel L. .
ANNALS OF STATISTICS, 2007, 35 (01) :70-91