Integrals for (dual) quasi-Hopf algebras. Applications

被引:39
作者
Bulacu, D
Caenepeel, S [1 ]
机构
[1] Free Univ Brussels, Fac Sci Appl, B-1050 Brussels, Belgium
[2] Univ Bucharest, Fac Math, RO-70109 Bucharest 1, Romania
关键词
D O I
10.1016/S0021-8693(03)00175-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical result in the theory of Hopf algebras concerns the uniqueness and existence of integrals: for an arbitrary Hopf algebra, the integral space has dimension less than or equal to 1, and for a finite-dimensional Hopf algebra, this dimension is exactly one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode follows from the other axioms of a finite-dimensional quasi-Hopf algebra. We give a new version of the Fundamental Theorem for quasi-Hopf algebras. We show that a dual quasi-Hopf algebra is co-Frobenius if and only if it has a non-zero integral. In this case, the space of left or right integrals has dimension one. (C) 2003 Published by Elsevier Inc.
引用
收藏
页码:552 / 583
页数:32
相关论文
共 23 条
  • [1] Abe E., 1977, Hopf Algebras
  • [2] Galois extensions for co-Frobenius Hopf algebras
    Beattie, M
    Dascalescu, S
    Raianu, S
    [J]. JOURNAL OF ALGEBRA, 1997, 198 (01) : 164 - 183
  • [3] Finiteness conditions, co-Frobenius Hopf algebras, and quantum groups
    Beattie, M
    Dascalescu, S
    Grunenfelder, L
    Nastasescu, C
    [J]. JOURNAL OF ALGEBRA, 1998, 200 (01) : 312 - 333
  • [4] Relative Hopf modules for (dual) quasi-Hopf algebras
    Bulacu, D
    Nauwelaerts, E
    [J]. JOURNAL OF ALGEBRA, 2000, 229 (02) : 632 - 659
  • [5] Radford's biproduct for quasi-Hopf algebras and bosonization
    Bulacu, D
    Nauwelaerts, E
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 174 (01) : 1 - 42
  • [6] Co-Frobenius hopf algebras: Integrals, Doi-Koppinen modules and injective objects
    Dascalescu, S
    Nastasescu, C
    Torrecillas, B
    [J]. JOURNAL OF ALGEBRA, 1999, 220 (02) : 542 - 560
  • [7] Dascalescu S., 2001, MONOGRAPHS TXB PURE, V235
  • [8] Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
  • [9] HASSEL C, 1995, GRADUATE TEXTS MATH, V155
  • [10] Doubles of quasi-quantum groups
    Hausser, F
    Nill, F
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 199 (03) : 547 - 589