Integrals for (dual) quasi-Hopf algebras. Applications

被引:40
作者
Bulacu, D
Caenepeel, S [1 ]
机构
[1] Free Univ Brussels, Fac Sci Appl, B-1050 Brussels, Belgium
[2] Univ Bucharest, Fac Math, RO-70109 Bucharest 1, Romania
关键词
D O I
10.1016/S0021-8693(03)00175-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical result in the theory of Hopf algebras concerns the uniqueness and existence of integrals: for an arbitrary Hopf algebra, the integral space has dimension less than or equal to 1, and for a finite-dimensional Hopf algebra, this dimension is exactly one. We generalize these results to quasi-Hopf algebras and dual quasi-Hopf algebras. In particular, it will follow that the bijectivity of the antipode follows from the other axioms of a finite-dimensional quasi-Hopf algebra. We give a new version of the Fundamental Theorem for quasi-Hopf algebras. We show that a dual quasi-Hopf algebra is co-Frobenius if and only if it has a non-zero integral. In this case, the space of left or right integrals has dimension one. (C) 2003 Published by Elsevier Inc.
引用
收藏
页码:552 / 583
页数:32
相关论文
共 23 条
[1]  
Abe E., 1977, Hopf Algebras
[2]   Galois extensions for co-Frobenius Hopf algebras [J].
Beattie, M ;
Dascalescu, S ;
Raianu, S .
JOURNAL OF ALGEBRA, 1997, 198 (01) :164-183
[3]   Finiteness conditions, co-Frobenius Hopf algebras, and quantum groups [J].
Beattie, M ;
Dascalescu, S ;
Grunenfelder, L ;
Nastasescu, C .
JOURNAL OF ALGEBRA, 1998, 200 (01) :312-333
[4]   Relative Hopf modules for (dual) quasi-Hopf algebras [J].
Bulacu, D ;
Nauwelaerts, E .
JOURNAL OF ALGEBRA, 2000, 229 (02) :632-659
[5]   Radford's biproduct for quasi-Hopf algebras and bosonization [J].
Bulacu, D ;
Nauwelaerts, E .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 174 (01) :1-42
[6]   Co-Frobenius hopf algebras: Integrals, Doi-Koppinen modules and injective objects [J].
Dascalescu, S ;
Nastasescu, C ;
Torrecillas, B .
JOURNAL OF ALGEBRA, 1999, 220 (02) :542-560
[7]  
Dascalescu S., 2001, MONOGRAPHS TXB PURE, V235
[8]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[9]  
HASSEL C, 1995, GRADUATE TEXTS MATH, V155
[10]   Doubles of quasi-quantum groups [J].
Hausser, F ;
Nill, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 199 (03) :547-589