Study of Spatial Inhomogeneity in Inverted All-Polymer Solar Cells: Effect of Solvent and Annealing

被引:2
作者
Perulli, Andrea [1 ]
Lattante, Sandro [1 ]
Persano, Anna [2 ]
Cola, Adriano [2 ]
Di Giulio, Massimo [1 ]
Anni, Marco [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio De Giorgi, I-73100 Lecce, Italy
[2] CNR, CNR, IMM, Unit Lecce, I-73100 Lecce, Italy
关键词
annealing; blends; conjugated polymers; photophysics; PHOTOCURRENT; PHOTOLUMINESCENCE; MORPHOLOGY; COPOLYMER; DEVICES;
D O I
10.1002/polb.23699
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The efficiency optimization of bulk heterojunction solar cells requires the control of the local active materials arrangement in order to obtain the best compromise between efficient charge generation and charge collection. Here, we investigate the large scale (10-100 m) inhomogeneity of the photoluminescence (PL) and the external quantum efficiency (EQE) in inverted all-polymer solar cells (APSC) with regioregular poly(3-hexylthiophene) (P3HT):poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) active blends. The morphology and the local active polymer mixing are changed by depositing the active layer from four different solvents and by thermal annealing. The simultaneous PL and EQE mapping allowed us to inspect the effects of local irregularities of active layer thickness, polymer mixing, polymer aggregation on the charge generation and collection efficiencies. In particular, we show that the increase of the solvent boiling point affects the EQE non-uniformity due to thickness fluctuations, the density non-uniformity of rrP3HT aggregate phase, and the blend components clustering. The thermal annealing leads to a general improvement of EQE and to an F8BT clustering in all the samples with locally decrease of the EQE. We estimate that the film uniformity optimization can lead to a total EQE improvement between 2.7 and 6.3 times. (c) 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 804-813
引用
收藏
页码:804 / 813
页数:10
相关论文
共 30 条
[1]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[2]  
2-A
[3]   Spatially Resolved Spectroscopic Mapping of Photocurrent and Photoluminescence in Polymer Blend Photovoltaic Devices [J].
Brenner, Thomas J. K. ;
McNeill, Christopher R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (39) :19364-19370
[4]   8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer [J].
Cnops, Kjell ;
Rand, Barry P. ;
Cheyns, David ;
Verreet, Bregt ;
Empl, Max A. ;
Heremans, Paul .
NATURE COMMUNICATIONS, 2014, 5
[5]   Solar cells with one-day energy payback for the factories of the future [J].
Espinosa, Nieves ;
Hosel, Markus ;
Angmo, Dechan ;
Krebs, Frederik C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) :5117-5132
[6]   Polymer donor-polymer acceptor (all-polymer) solar cells [J].
Facchetti, Antonio .
MATERIALS TODAY, 2013, 16 (04) :123-132
[7]   Correlation of Heterojunction Luminescence Quenching and Photocurrent in Polymer-Blend Photovoltaic Diodes [J].
Gonzalez-Rabade, Astrid ;
Morteani, Arne C. ;
Friend, Richard H. .
ADVANCED MATERIALS, 2009, 21 (38-39) :3924-+
[8]   Solar cell efficiency tables (version 41) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :1-11
[9]  
Halls JJM, 2000, ADV MATER, V12, P498, DOI 10.1002/(SICI)1521-4095(200004)12:7<498::AID-ADMA498>3.0.CO
[10]  
2-H