q-deformed quadrature operator and optical tomogram

被引:10
作者
Jayakrishnan, M. P. [1 ]
Dey, Sanjib [2 ,3 ]
Faizal, Mir [4 ,5 ]
Sudheesh, C. [6 ]
机构
[1] Indian Inst Sci Educ & Res, Sch Phys, Thiruvananthapuram 695016, Kerala, India
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[3] Inst Poincare, F-75005 Paris, France
[4] Univ British Columbia Okanagan Kelowna, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Space Sci & Technol, Dept Phys, Thiruvananthapuram 695547, Kerala, India
关键词
Quantum tomography; Quadrature operator; Deformed coherent states; COHERENT STATES; HARMONIC-OSCILLATOR; QUANTUM; LIGHT;
D O I
10.1016/j.aop.2017.08.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we define the homodyne q-deformed quadrature operator and find its eigenstates in terms of the deformed Fock states. We find the quadrature representation of q-deformed Fock states in the process. Furthermore, we calculate the explicit analytical expression for the optical tomogram of the q-deformed coherent states. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:584 / 590
页数:7
相关论文
共 35 条
[1]   Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings [J].
Aganagic, M ;
Ooguri, H ;
Saulina, N ;
Vafa, C .
NUCLEAR PHYSICS B, 2005, 715 (1-2) :304-348
[2]   HILBERT SPACES OF ANALYTIC-FUNCTIONS AND GENERALIZED COHERENT STATES [J].
ARIK, M ;
COON, DD .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) :524-527
[3]   ON THE ROGERS-SZEGO POLYNOMIALS [J].
ATAKISHIYEV, NM ;
NAGIYEV, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (17) :L611-L615
[4]   Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems [J].
Bagchi, Bijan ;
Fring, Andreas .
PHYSICS LETTERS A, 2009, 373 (47) :4307-4310
[5]   Operational theory of homodyne detection [J].
Banaszek, K ;
Wodkiewicz, K .
PHYSICAL REVIEW A, 1997, 55 (04) :3117-3123
[6]  
Barnett S M., 2002, Methods in Theoretical Quantum Optics
[7]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[8]   HOMODYNE STATISTICS [J].
BRAUNSTEIN, SL .
PHYSICAL REVIEW A, 1990, 42 (01) :474-481
[9]   Quantum tomography as a tool for the characterization of optical devices [J].
D'Ariano, GM ;
De Laurentis, M ;
Paris, MGA ;
Porzio, A ;
Solimeno, S .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (03) :S127-S132
[10]   Noncommutative q-photon-added coherent states [J].
Dey, Sanjib ;
Hussin, Veronique .
PHYSICAL REVIEW A, 2016, 93 (05)