Duhamel's formula for time-fractional Schrodinger equations

被引:30
|
作者
Zhou, Yong [1 ]
Peng, Li [1 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; Duhamel's formula; Schrodinger equations;
D O I
10.1002/mma.5222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the time-fractional order Schrodinger equation that is a fundamental equation in fractional quantum mechanics. By using the spectral theorem, we prove Duhamel's formula and give some properties of solution operators, which can be used to study the local existence and the global existence of time-fractional Schrodinger equations on a Hilbert space.
引用
收藏
页码:8345 / 8349
页数:5
相关论文
共 50 条
  • [21] On time-fractional relativistic diffusion equations
    Narn-Rueih Shieh
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 229 - 237
  • [22] Green's Function Estimates for Time-Fractional Evolution Equations
    Johnston, Ifan
    Kolokoltsov, Vassili
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 38
  • [23] On a class of time-fractional differential equations
    Li, Cheng-Gang
    Kostic, Marko
    Li, Miao
    Piskarev, Sergey
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 639 - 668
  • [24] Nonlinear time-fractional dispersive equations
    Harris, Piero Artale
    Garra, Roberto
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2015, 6 (01)
  • [25] On a class of time-fractional differential equations
    Cheng-Gang Li
    Marko Kostić
    Miao Li
    Sergey Piskarev
    Fractional Calculus and Applied Analysis, 2012, 15 : 639 - 668
  • [26] On time-fractional relativistic diffusion equations
    Shieh, Narn-Rueih
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (02) : 229 - 237
  • [27] SYSTEMS OF ABSTRACT TIME-FRACTIONAL EQUATIONS
    Kostic, Marko
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 119 - 132
  • [28] Approximate Time-Fractional Differential Equations
    Tavan, Saber
    Rad, Mohammad Jahangiri
    Shamloo, Ali Salimi
    Mahmoudi, Yaghoub
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2024, 2024
  • [29] A Time-Fractional Schrodinger Equation with Singular Potentials on the Boundary
    Alazman, Ibtehal
    Jleli, Mohamed
    Samet, Bessem
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [30] THE FRACTIONAL COMPLEX TRANSFORM: A NOVEL APPROACH TO THE TIME-FRACTIONAL SCHRoDINGER EQUATION
    Ain, Qura Tul
    He, Ji-Huan
    Anjum, Naveed
    Ali, Muhammad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)