Duhamel's formula for time-fractional Schrodinger equations

被引:30
|
作者
Zhou, Yong [1 ]
Peng, Li [1 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caputo fractional derivative; Duhamel's formula; Schrodinger equations;
D O I
10.1002/mma.5222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the time-fractional order Schrodinger equation that is a fundamental equation in fractional quantum mechanics. By using the spectral theorem, we prove Duhamel's formula and give some properties of solution operators, which can be used to study the local existence and the global existence of time-fractional Schrodinger equations on a Hilbert space.
引用
收藏
页码:8345 / 8349
页数:5
相关论文
共 50 条
  • [1] On the Stability of Time-Fractional Schrodinger Differential Equations
    Hicdurmaz, B.
    Ashyralyev, A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (10) : 1215 - 1225
  • [2] Optimal error analysis of the Alikhanov formula for a time-fractional Schrodinger equation
    Zhao, Guoye
    An, Na
    Huang, Chaobao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 159 - 170
  • [3] Numerical treatments of the nonlinear coupled time-fractional Schrodinger equations
    Hadhoud, Adel R.
    Agarwal, Praveen
    Rageh, Abdulqawi A. M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 7119 - 7143
  • [4] Shehu transform on time-fractional Schrodinger equations - an analytical approach
    Kapoor, Mamta
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (05) : 1981 - 2010
  • [5] Residual power series method for time-fractional Schrodinger equations
    Zhang, Yu
    Kumar, Amit
    Kumar, Sunil
    Baleanu, Dumitru
    Yang, Xiao-Jun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (11): : 5821 - 5829
  • [6] Numerical simulation for a time-fractional coupled nonlinear Schrodinger equations
    Karaman, Bahar
    Dereli, Yilmaz
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1233 - 1253
  • [7] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [8] A novel approach for solving linear and nonlinear time-fractional Schrodinger equations
    Liaqat, Muhammad Imran
    Akgul, Ali
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [9] Analytic Study on Time-Fractional Schrodinger Equations: Exact Solutions by GDTM
    Odibat, Zaid
    Momani, Shaher
    Alawneh, Ahmed
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [10] Optical soliton solutions of perturbing time-fractional nonlinear Schrodinger equations
    Osman, M. S.
    Ali, Khalid K.
    OPTIK, 2020, 209