SIGN-CHANGING SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM INVOLVING THE FRACTIONAL p-LAPLACIAN

被引:2
作者
Wu, Pengcheng [1 ]
Zhou, Yuying [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional p-Laplacian; sign-changing solutions; topology degree; deformation lemma; SCALAR FIELD-EQUATIONS; KIRCHHOFF-TYPE PROBLEM; NODAL SOLUTIONS; ELLIPTIC-EQUATIONS; GROUND-STATE; EXISTENCE; REGULARITY;
D O I
10.12775/TMNA.2020.051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we consider the following boundary value problem involving the fractional p-Laplacian: (P) (-Delta)(p)(s)u(x) = f (x, u) in Omega, u(x) = 0 in R-N \ Omega. where Omega is a bounded smooth domain in R-N with N >= 1, (-Delta)(p)(s) is the fractional p-Laplacian with s is an element of (0, 1), p is an element of (1, N/s), f (x, u) : Omega x R -> R. Under the improved subcritical polynomial growth condition and other conditions, the existences of a least-energy sign-changing solution for the problem (P) has been established.
引用
收藏
页码:597 / 619
页数:23
相关论文
共 30 条
  • [11] Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian
    Chang, Xiaojun
    Wang, Zhi-Qiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2965 - 2992
  • [12] A symmetry result for a general class of divergence form PDEs in fibered media
    Chermisi, Milena
    Valdinoci, Enrico
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 695 - 703
  • [13] Fibered nonlinearities for p(x)-Laplace equations
    Chermisi, Milena
    Valdinoci, Enrico
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2009, 2 (02) : 185 - 205
  • [14] Traveling two and three dimensional capillary gravity water waves
    Craig, W
    Nicholls, DP
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (02) : 323 - 359
  • [15] Deng YB, 2018, ADV DIFFERENTIAL EQU, V23, P109
  • [16] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [17] Positive and nodal solutions for a nonlinear Schrodinger equation with indefinite potential
    Furtado, Marcelo F.
    Maia, Liliane A.
    Medeiros, Everaldo S.
    [J]. ADVANCED NONLINEAR STUDIES, 2008, 8 (02) : 353 - 373
  • [18] ON THE INFINITELY MANY SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION
    JONES, C
    KUPPER, T
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) : 803 - 835
  • [19] Regularity for the nonlinear Signorini problem
    Milakis, Emmanouil
    Silvestre, Luis
    [J]. ADVANCES IN MATHEMATICS, 2008, 217 (03) : 1301 - 1312
  • [20] Noussair ES, 1997, INDIANA U MATH J, V46, P1255