Lung Cancer Classification Using Squeeze and Excitation Convolutional Neural Networks with Grad Cam plus plus Class Activation Function

被引:11
作者
Joshua, Eali Stephen Neal [1 ]
Bhattacharyya, Debnath [2 ]
Chakkravarthy, Midhun [1 ]
Kim, Hye-Jin [3 ]
机构
[1] Lincoln Univ Coll, Dept Comp Sci & Multimedia, Kuala Lumpur 47301, Malaysia
[2] Koneru Laksmaiah Educ Fdn, Dept Comp Sci & Engn, Guntur 522502, Andhra Pradesh, India
[3] Kookmin Univ, 77 Jeongneung Ro, Seoul 02707, South Korea
关键词
lung cancer; (SENET) squeeze and excite network; class activation; Grad-Cam plus; deep learning; CNN; Luna-16; nodule; NODULES; DIAGNOSIS; SHAPE;
D O I
10.18280/ts.380421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The leading cause of cancer-related death globally has been identified as lung cancer. Early lung nodule detection is critical for lung cancer therapy and patient survival. The Gard Cam++ Class Activation Function is used with a squeeze-and-excite network to provide a revolutionary method for differentiating malignant from benign lung nodules on CT scans. The new SENET (Squeeze-and-Excitation Networks) Grad Cam++ module, which combines the features calibration and discrimination benefits of SENET, has been shown to have a substantial potential for improving feature discriminability in lung cancer classification. According to the publicly available LUng Nodule Analysis 2016 (LUNA16) database, when assessed on 1230 nodules, the technique achieved an AUC of 0.9664 and an accuracy of 97.08% (600 malignant and 630 benign). The favorable results demonstrate the robustness of our technique to nodule classification, which we anticipate will be valuable in the future. The technology's objective is to aid radiologists in evaluating diagnostic data and differentiating benign from malignant lung nodules on CT images. To our knowledge, no systematic evaluation of SENET usefulness in classifying lung nodules has been done.
引用
收藏
页码:1103 / 1112
页数:10
相关论文
共 34 条
[1]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[2]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification [J].
Bulik-Sullivan, Brendan ;
Busby, Jennifer ;
Palmer, Christine D. ;
Davis, Matthew J. ;
Murphy, Tyler ;
Clark, Andrew ;
Busby, Michele ;
Duke, Fujiko ;
Yang, Aaron ;
Young, Lauren ;
Ojo, Noelle C. ;
Caldwell, Kamilah ;
Abhyankar, Jesse ;
Boucher, Thomas ;
Hart, Meghan G. ;
Makarov, Vladimir ;
De Montpreville, Vincent Thomas ;
Mercier, Olaf ;
Chan, Timothy A. ;
Scagliotti, Giorgio ;
Bironzo, Paolo ;
Novello, Silvia ;
Karachaliou, Niki ;
Rosell, Rafael ;
Anderson, Ian ;
Gabrail, Nashat ;
Hrom, John ;
Limvarapuss, Chainarong ;
Choquette, Karin ;
Spira, Alexander ;
Rousseau, Raphael ;
Voong, Cynthia ;
Rizvi, Naiyer A. ;
Fadel, Elie ;
Frattini, Mark ;
Jooss, Karin ;
Skoberne, Mojca ;
Francis, Joshua ;
Yelensky, Roman .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :55-+
[5]   Squeeze-and-Excitation Convolutional Neural Network for Classification of Malignant and Benign Lung Nodules [J].
Chen, Ying ;
Du, Weiwei ;
Duan, Xiaojie ;
Ma, Yanhe ;
Zhang, Hong .
JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (02) :153-158
[6]   Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM [J].
de Carvalho Filho, Antonio Oseas ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Nunes, Rodolfo Acatauassu ;
Gattass, Marcelo .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (08) :1129-1146
[7]   Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture [J].
Ferreira Jr, Jose Raniery ;
Oliveira, Marcelo Costa ;
de Azevedo-Marques, Paulo Mazzoncini .
JOURNAL OF DIGITAL IMAGING, 2018, 31 (04) :451-463
[8]   Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview [J].
Gao, Jun ;
Jiang, Qian ;
Zhou, Bo ;
Chen, Daozheng .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) :6536-6561
[9]   FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images [J].
Gerard, Sarah E. ;
Patton, Taylor J. ;
Christensen, Gary E. ;
Bayouth, John E. ;
Reinhardt, Joseph M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (01) :156-166
[10]   Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules [J].
Gong, Jing ;
Liu, Ji-Yu ;
Sun, Xi-Wen ;
Zheng, Bin ;
Nie, Sheng-Dong .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (03)