Theoretical insight into hydroxyl production via H2O2 decomposition over the Fe3O4(311) surface

被引:19
|
作者
Lin, Pin-Jun [1 ]
Yeh, Chen-Hao [2 ]
Jiang, Jyh-Chiang [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, 43 Keelung Rd,Sec 4, Taipei 10607, Taiwan
[2] Feng Chia Univ, Dept Mat Sci & Engn, 100 Wenhwa Rd, Taichung 40724, Taiwan
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; SITE COULOMB REPULSION; MAGNETIC NANOPARTICLES; FE3O4(111) SURFACE; EFFICIENT REMOVAL; HG-0; OXIDATION; BISPHENOL-A; METAL-IONS; FENTON;
D O I
10.1039/d1ra06943h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fenton's reagent provides a method to produce active hydroxyl radicals (OH) for chemical oxidation by mixing iron oxide and hydrogen peroxide, which divides into homogeneous and heterogeneous Fenton's reagent. Heterogeneous Fenton's reagent is fabricated from H2O2 and various iron oxide solid materials, such as alpha-FeOOH, alpha-Fe2O3, and Fe3O4. Fe3O4 possesses the Fe2+/Fe3+ mixed valence oxidational state and has been reported to have good catalytic activity. However, the reaction mechanism of H2O2 decomposition on Fe3O4 surfaces is still unclear. In this work, we performed DFT calculations to investigate the H2O2 decomposition mechanisms over the Fe3O4(311) surface. There are two iron environments for H2O2 adsorption and decomposition on the Fe3O4(311) surface, a Fe2+/Fe3+ environment and a Fe3+/Fe3+ environment. We found that the H2O2 can adsorb on the Fe2+/Fe3+ environment by molecular adsorption but by dissociative adsorption on the Fe3+/Fe3+ environment. Our results show that both adsorption structures can produce two OH groups on the Fe3O4(311) surface thermodynamically. In addition, based on the electronic property analysis, H2O2 on the Fe2+/Fe3+ environment follows the Haber-Weiss mechanism to form one OH anion and one OH radical. On the other hand, H2O2 on the Fe3+/Fe3+ environment follows the radical mechanism to form two OH radicals. In particular, the OH radical formed on Fe2+/Fe3+ has energy levels on both sides of the Fermi energy level. It can be expected that this OH radical has good redox activity.
引用
收藏
页码:36257 / 36264
页数:8
相关论文
共 50 条
  • [1] Hydroxylamine enhanced Fe3O4/H2O2 system for removing tartrazine
    Fu, Lichun
    Jin, Tao
    Hu, Ruixuan
    Pan, Yuwei
    Zhao, Yingjie
    DESALINATION AND WATER TREATMENT, 2024, 318
  • [2] Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant
    Xie, Lulu
    Wang, Hongxia
    Lu, Bin
    Zhao, Jingxiang
    Cai, Qinghai
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2018, 125 (02) : 743 - 756
  • [3] Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant
    Lulu Xie
    Hongxia Wang
    Bin Lu
    Jingxiang Zhao
    Qinghai Cai
    Reaction Kinetics, Mechanisms and Catalysis, 2018, 125 : 743 - 756
  • [4] Removal of Hg0 Using Vaporized H2O2 and an Additive Catalyzed by Fe3O4/Fe0
    Zhao, Yi
    Yuan, Bo
    Shen, Yao
    Mao, Xingzhou
    Hao, Runlong
    ENERGY & FUELS, 2018, 32 (08) : 8579 - 8586
  • [5] Mechanism of Hg removal by gaseous advanced oxidation process with Fe3O4 and H2O2
    Zhou C.
    Yang H.
    Sun J.
    Qi D.
    Mao L.
    Song Z.
    Sun L.
    Zhou, Changsong (cszhou@njnu.edu.cn), 1840, Materials China (69): : 1840 - 1845
  • [6] Electrochemical Detection of H2O2 Based on Fe3O4 Nanoparticles with Graphene Oxide and Polyamidoamine Dendrimer
    Xiao Yang
    Lina Wang
    Guizhong Zhou
    Ning Sui
    Yuanxiang Gu
    Jun Wan
    Journal of Cluster Science, 2015, 26 : 789 - 798
  • [7] Integrated electro-Fenton process enabled by a rotating Fe3O4/gas diffusion cathode for simultaneous generation and activation of H2O2
    Zhang, Yan
    Gao, Mingming
    Wang, Shu-Guang
    Zhou, Weizhi
    Sang, Yuanhua
    Wang, Xin-Hua
    ELECTROCHIMICA ACTA, 2017, 231 : 694 - 704
  • [8] Electrodes modified with multiwalled carbon nanotubes carrying Fe3O4 beads: High sensitivity to H2O2
    Kang, Shi-Zhao
    Chen, Hong
    Mu, Jin
    SOLID STATE SCIENCES, 2011, 13 (01) : 142 - 145
  • [9] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Pan Lu
    Tang Jing
    Chen YongHong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (03) : 362 - 369
  • [10] Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2
    Yang, Miao
    Jonsson, Mats
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2015, 400 : 49 - 55