Strichartz inequalities for the wave equation with the full Laplacian on the Heisenberg group

被引:9
作者
Furioli, Giulia
Melzi, Camillo
Veneruso, Alessandro
机构
[1] Univ Bergamo, Dipartimento Ingn Gest & Informaz, I-24044 Dalmine, BG, Italy
[2] Univ Insubria, Dipartimento Sci Chim Fis & Matemat, I-22100 Como, Italy
[3] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2007年 / 59卷 / 06期
关键词
D O I
10.4153/CJM-2007-056-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove dispersive and Strichartz inequalities for the solution of the wave equation related to the full Laplacian on the Heisenberg group, by means of Besov spaces defined by a Littlewood-Paley decomposition related to the spectral resolution of the full Laplacian. This requires a careful analysis due also to the non-homogeneous nature of the full Laplacian. This result has to be compared to a previous one by Bahouri, Gerard and Xu concerning the solution of the wave equation related to the Kohn Laplacian.
引用
收藏
页码:1301 / 1322
页数:22
相关论文
共 30 条
[1]   SPECTRAL MULTIPLIERS ON LIE-GROUPS OF POLYNOMIAL-GROWTH [J].
ALEXOPOULOS, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :973-979
[2]  
Bahouri H, 2001, REV MAT IBEROAM, V17, P69
[3]  
Bahouri H, 2000, J ANAL MATH, V82, P93, DOI 10.1007/BF02791223
[4]   The spherical transform of a Schwartz function on the Heisenberg group [J].
Benson, C ;
Jenkins, J ;
Ratcliff, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (02) :379-423
[5]  
Benson C, 1996, C MATH, V71, P305
[7]   Dispersive and Strichartz estimates on H-type groups [J].
Del Hierro, M .
STUDIA MATHEMATICA, 2005, 169 (01) :1-20
[8]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[9]  
FARAUT J, 1987, PROGR MATH, V69, P1
[10]   Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth [J].
Furioli, G. ;
Melzi, C. ;
Veneruso, A. .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (9-10) :1028-1040