Pitting corrosion seriously harms the service life of oil field gathering and transportation pipelines, which is an important subject of corrosion prevention. In this study, we collected the corrosion data of pipeline steel immersion experiment and established a pitting judgment model based on machine learning algorithm. Feature reduction methods, including feature importance calculation and pearson correlation analysis, were first adopted to find the important factors affecting pitting. Then, the best input feature set for pitting judgment was constructed by combining feature combination and feature creation. Through receiver operating characteristic (ROC) curve and area under curve (AUC) calculation, random forest algorithm was selected as the modeling algorithm. As a result, the pitting judgment model based on machine learning and high dimensional feature parameters (i.e., material factors, solution factors, environment factors) showed good prediction accuracy. This study provided an effective means for processing high-dimensional and complex corrosion data, and proved the feasibility of machine learning in solving material corrosion problems.
机构:
Univ Tasmania, Australian Maritime Coll, Launceston, Tas 7250, AustraliaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
Bhandari, Jyoti
;
Khan, Faisal
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Fac Engn & Appl Sci, SREG, St John, NF A1B 3X5, CanadaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
Khan, Faisal
;
Abbassi, Rouzbeh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tasmania, Australian Maritime Coll, Launceston, Tas 7250, AustraliaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
Abbassi, Rouzbeh
;
论文数: 引用数:
h-index:
机构:
Garaniya, Vikram
;
Ojeda, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tasmania, Australian Maritime Coll, Launceston, Tas 7250, AustraliaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
机构:
European Space Agcy, ESA, Prod Assurance & Safety Dept, Mat & Proc Div, NL-2200 AG Noordwijk, NetherlandsEuropean Space Agcy, ESA, Prod Assurance & Safety Dept, Mat & Proc Div, NL-2200 AG Noordwijk, Netherlands
Ghidini, T.
;
Donne, C. Dalle
论文数: 0引用数: 0
h-index: 0
机构:
EADS Deutschland GmbH, Innovat Works, Munich, GermanyEuropean Space Agcy, ESA, Prod Assurance & Safety Dept, Mat & Proc Div, NL-2200 AG Noordwijk, Netherlands
机构:
Univ Tasmania, Australian Maritime Coll, Launceston, Tas 7250, AustraliaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
Bhandari, Jyoti
;
Khan, Faisal
论文数: 0引用数: 0
h-index: 0
机构:
Mem Univ Newfoundland, Fac Engn & Appl Sci, SREG, St John, NF A1B 3X5, CanadaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
Khan, Faisal
;
Abbassi, Rouzbeh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tasmania, Australian Maritime Coll, Launceston, Tas 7250, AustraliaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
Abbassi, Rouzbeh
;
论文数: 引用数:
h-index:
机构:
Garaniya, Vikram
;
Ojeda, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tasmania, Australian Maritime Coll, Launceston, Tas 7250, AustraliaUniv Tasmania, Australian Maritime Coll, Launceston, Tas 7250, Australia
机构:
European Space Agcy, ESA, Prod Assurance & Safety Dept, Mat & Proc Div, NL-2200 AG Noordwijk, NetherlandsEuropean Space Agcy, ESA, Prod Assurance & Safety Dept, Mat & Proc Div, NL-2200 AG Noordwijk, Netherlands
Ghidini, T.
;
Donne, C. Dalle
论文数: 0引用数: 0
h-index: 0
机构:
EADS Deutschland GmbH, Innovat Works, Munich, GermanyEuropean Space Agcy, ESA, Prod Assurance & Safety Dept, Mat & Proc Div, NL-2200 AG Noordwijk, Netherlands